【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴(yán)重?fù)矶?/span>.晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)用分層抽樣的方法從交通指數(shù)在,,的路段中共抽取個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(Ⅱ)從(Ⅰ)中抽出的個(gè)路段中任取個(gè),求至少有個(gè)路段為輕度擁堵的概率.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)分別求,這三個(gè)級(jí)別的路段,然后求抽樣比,再求三個(gè)級(jí)別抽取的路段的個(gè)數(shù);

(Ⅱ)根據(jù)(Ⅰ)的結(jié)果,分別設(shè)個(gè)輕度擁堵路段為,,選取的個(gè)中度擁堵路段為,,選取的個(gè)嚴(yán)重?fù)矶侣范螢?/span>,然后按照列舉法求概率.

(Ⅰ)由直方圖可知:

,,.

所以這20個(gè)路段中,輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范畏謩e為6個(gè),9個(gè),3個(gè).

擁堵路段共有個(gè),按分層抽樣從18個(gè)路段中選出6個(gè),

每種情況分別為:,,

即這三個(gè)級(jí)別路段中分別抽取的個(gè)數(shù)為.

(Ⅱ)記(Ⅰ)中選取的個(gè)輕度擁堵路段為,,選取的個(gè)中度擁堵路段為,選取的個(gè)嚴(yán)重?fù)矶侣范螢?/span>,則從個(gè)路段選取個(gè)路段的可能情況如下:

,,,,,,,,,,,,,共15種可能,

其中至少有個(gè)輕度擁堵的有:

,,,,,,,,共9種可能,所以所選個(gè)路段中至少個(gè)路段輕度擁堵的概率為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;

(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和滿足

?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;

(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若直線與曲線交于兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的個(gè)數(shù)是(

①直線上有兩個(gè)點(diǎn)到平面的距離相等,則這條直線和這個(gè)平面平行;

為異面直線,則過(guò)且與平行的平面有且僅有一個(gè);

③直四棱柱是直平行六面體;

④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)當(dāng)時(shí),求證:;

(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿足

(1)求的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與定直線相切.

1)求動(dòng)圓圓心的軌跡的方程;

2)過(guò)點(diǎn)的任一條直線與軌跡交于不同的兩點(diǎn),試探究在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徽《九章算術(shù)商功》中將底面為長(zhǎng)方形,兩個(gè)三角面與底面垂直的四棱錐體叫做陽(yáng)馬.如圖,是一個(gè)陽(yáng)馬的三視圖,則其外接球的體積為( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案