15.?dāng)?shù)列2,22,222,2222,的一個通項公式an是(  )
A.${a_n}={10^n}-8$B.${a_n}=\frac{{{{10}^n}-1}}{9}$C.${a_n}={2^n}-1$D.${a_n}=\frac{{2({{{10}^n}-1})}}{9}$

分析 根據(jù)所給的這個數(shù)列的特點,先寫出9,99,999,9999的通項是10n-1,而要求數(shù)列的每一項均是數(shù)列{cn}的$\frac{2}{9}$,即可得答案.

解答 解:根據(jù)題意,數(shù)列{cn}:9,99,999,9999的通項是10n-1,
數(shù)列2,22,222,2222,…的每一項均是數(shù)列{cn}的$\frac{2}{9}$,
則數(shù)列2,22,222,2222,的一個通項公式是an=$\frac{2(1{0}^{n}-1)}{9}$;
故選:D.

點評 本題考查數(shù)列的通項的求法,求解的關(guān)鍵是從數(shù)列的前幾項中發(fā)現(xiàn)數(shù)列各項變化的規(guī)律,利用此規(guī)律去尋找通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.${∫}_{1}^{e}$$\frac{ln{x}^{2}}{x}$dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.偶函數(shù)y=f(x)滿足下列條件①x≥0時,f(x)=x;對任意x∈[t,t+1],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是( 。
A.$[-2,\frac{3}{4}]$B.$(-∞,-\frac{3}{4}]$C.$[-\frac{3}{4},0]$D.$[-\frac{4}{3},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x+2,x∈[0,3],則函數(shù)的值域為[1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義在R上的函數(shù)f(x)滿足:
①f(1)=2; ②當(dāng)x>0時,f(x)>1; ③對任意的x,y∈R,都有f(x+y)=f(x)•f(y).
(1)求證:f(0)=1,且對任意x<0時,0<f(x)<1;
(2)求證:f(x)在R上是單調(diào)遞增函數(shù);
(3)求滿足f(3x-x2)>4的所有x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.根據(jù)下列算法語句,

當(dāng)輸入x為70時,輸出y的值為31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于x的方程$\sqrt{1-{x^2}}+a=x$有兩個不相等實數(shù)根,則實數(shù)a的取值范圍是(  )
A.$(1,\sqrt{2}]$B.$(-1,\sqrt{2}]$C.$(-\sqrt{2},-1]$D.$(-\sqrt{2},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)y=f(x)是R上的可導(dǎo)函數(shù),當(dāng)x≠0時,有$f'(x)+\frac{f(x)}{x}>0$,則函數(shù)$F(x)=x•f(x)-\frac{1}{x}$的零點個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市交管部門對一路段限速60km/h,為調(diào)查違章情況,對經(jīng)過該路段的300輛汽車進(jìn)行檢測,將所得數(shù)據(jù)按[40,50),[50.60),[60,70),[70,80)(所有車輛的車速均在[40,80]內(nèi))分成四組,繪制成如圖所示的頻率分布直方圖.
(1)若用分層抽樣的方法,從這300輛車中抽取20輛,則違章車有多少輛?其中多少輛車的車速不低于70km/h?
(2)用此次檢測結(jié)果估計全市車輛的違章情況,若隨機(jī)抽取3輛車.
(i)求這3輛車中違章車輛數(shù)ξ的分布列及期望;
(ii)假如這3輛車都是違章車輛,從中隨機(jī)抽取1輛,求其車速不低于70km.h的概率.

查看答案和解析>>

同步練習(xí)冊答案