7.關于x的方程$\sqrt{1-{x^2}}+a=x$有兩個不相等實數(shù)根,則實數(shù)a的取值范圍是( 。
A.$(1,\sqrt{2}]$B.$(-1,\sqrt{2}]$C.$(-\sqrt{2},-1]$D.$(-\sqrt{2},1]$

分析 畫出函數(shù)y=$\sqrt{1-{x}^{2}}$與y=x-a的圖象,利用函數(shù)的圖象,求解即可.

解答 解:關于x的方程$\sqrt{1-{x^2}}+a=x$有兩個不相等實數(shù)根,就是函數(shù)y=$\sqrt{1-{x}^{2}}$與y=x-a的圖象有兩個不同交點,如圖:可知半圓與直線y=x-a相切時只有一個交點,此時:$\frac{|-a|}{\sqrt{2}}=1$,可得a=-$\sqrt{2}$,a=$\sqrt{2}$舍去.
可得a∈(-$\sqrt{2}$,-1].
故選:C.

點評 不同考查直線與圓的位置關系,函數(shù)的圖象的應用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.解不等式|x-1|-|x-2|>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)$f(x)=1+\frac{x}{2}-sinx,x∈(0,2π)$,則 f(x)的單調(diào)減區(qū)間是(0,$\frac{π}{3}$),($\frac{5π}{3}$,2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.數(shù)列2,22,222,2222,的一個通項公式an是(  )
A.${a_n}={10^n}-8$B.${a_n}=\frac{{{{10}^n}-1}}{9}$C.${a_n}={2^n}-1$D.${a_n}=\frac{{2({{{10}^n}-1})}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某射手射擊一次,命中環(huán)數(shù)與概率如表:
命中環(huán)數(shù)  10環(huán)  9環(huán)  8環(huán)  7環(huán)7環(huán)以下
  概率0.160.320.240.200.08
計算:
(1)射擊一次,命中環(huán)數(shù)不低于7環(huán)的概率.
(2)射擊一次,至少命中8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.點M(2,1)到拋物線y=ax2準線的距離為2,則a的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{12}$C.$\frac{1}{4}$或$-\frac{1}{12}$D.$-\frac{1}{4}$或$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知$\overrightarrow a=(1,\;\;-2)$,$\overrightarrow b=(1,\;\;0)$,向量$λ\overrightarrow a+\overrightarrow b$與$\overrightarrow a-4\overrightarrow b$垂直,則實數(shù)λ的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.閱讀流程圖,其輸出的結果是13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若α∈($\frac{π}{2}$,π)且cos($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{10}$,則cosα=-$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案