17.若α∈($\frac{π}{2}$,π)且cos($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{10}$,則cosα=-$\frac{3}{5}$.

分析 由已知利用特殊角的三角函數(shù)值,兩角差的余弦函數(shù)公式化簡(jiǎn)可得cosα+sinα=$\frac{1}{5}$,進(jìn)而利用同角三角函數(shù)基本關(guān)系式即可計(jì)算得解.

解答 解:∵α∈($\frac{π}{2}$,π)且cos($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{10}$,
∴可得:$\frac{\sqrt{2}}{2}$(cosα+sinα)=$\frac{\sqrt{2}}{10}$,解得:cosα+sinα=$\frac{1}{5}$,
∴cosα=$\frac{1}{5}$-sinα<0,sinα=$\frac{1}{5}$-cosα>0,
又∵cos2α+sin2α=1,
∴cos2α+($\frac{1}{5}$-cosα)2=1,整理可得:50cos2α-10cosα-24=0,
∴解得:cosα=-$\frac{3}{5}$,或$\frac{4}{5}$(舍去).
故答案為:-$\frac{3}{5}$.

點(diǎn)評(píng) 本題主要考查了特殊角的三角函數(shù)值,兩角差的余弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于x的方程$\sqrt{1-{x^2}}+a=x$有兩個(gè)不相等實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.$(1,\sqrt{2}]$B.$(-1,\sqrt{2}]$C.$(-\sqrt{2},-1]$D.$(-\sqrt{2},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=x2-2x+3的頂點(diǎn)坐標(biāo)為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市交管部門對(duì)一路段限速60km/h,為調(diào)查違章情況,對(duì)經(jīng)過該路段的300輛汽車進(jìn)行檢測(cè),將所得數(shù)據(jù)按[40,50),[50.60),[60,70),[70,80)(所有車輛的車速均在[40,80]內(nèi))分成四組,繪制成如圖所示的頻率分布直方圖.
(1)若用分層抽樣的方法,從這300輛車中抽取20輛,則違章車有多少輛?其中多少輛車的車速不低于70km/h?
(2)用此次檢測(cè)結(jié)果估計(jì)全市車輛的違章情況,若隨機(jī)抽取3輛車.
(i)求這3輛車中違章車輛數(shù)ξ的分布列及期望;
(ii)假如這3輛車都是違章車輛,從中隨機(jī)抽取1輛,求其車速不低于70km.h的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.同時(shí)具備以下性質(zhì):(1)最小正周期為π;(2)圖象關(guān)于x=$\frac{π}{3}$對(duì)稱;(3)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)的是( 。
A.y=sin($\frac{x}{2}$+$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=sin(2x-$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$f(α)=\frac{{cos({\frac{π}{2}+α})•cos({2π-α})•sin({\frac{3π}{2}-α})}}{{sin({-π-α})•sin({\frac{3π}{2}+α})}}$,
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.高一年級(jí)有14個(gè)班,每個(gè)班學(xué)生的學(xué)號(hào)都是1~50,為了交流學(xué)習(xí)經(jīng)驗(yàn),要求各班學(xué)號(hào)為26的學(xué)生參加交流活動(dòng),這里運(yùn)用的抽樣方法是( 。
A.抽簽法B.分層抽樣C.系統(tǒng)抽樣D.隨機(jī)數(shù)表法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正數(shù)x,y滿足xy2=4,則x+2y的最小值是( 。
A.3$\root{3}{4}$B.$\root{3}{4}$C.4$\root{3}{3}$D.$\root{3}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案