16.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若b=c-2bcosA.
(1)求證:A=2B;
(2)若5b=3c,$a=4\sqrt{6}$,求BC邊上的高.

分析 (1)因?yàn)閎=c-2bcosA,所以sinB=sinC-2sinBcosA,進(jìn)而sinB=sin(A-B),即可證明結(jié)論;
(2)由余弦定理,求出b=6,c=10,利用等面積求BC邊上的高.

解答 (1)證明:因?yàn)閎=c-2bcosA,
所以sinB=sinC-2sinBcosA,
因?yàn)镃=π-(B+A),
所以sinB=sin(π-(B+A))-2sinBsinA
所以sinB=sinBcosA+cosBsinA-2sinBcosA
即sinB=cosBsinA-sinBcosA,
即sinB=sin(A-B),
因?yàn)?<B<π,0<A<π,所以-π<A-B<π,
所以B=A-B或B=π-(A-B),
故A=2B;
(2)解:由5b=3c及b=c-2bcosA得,$cosA=\frac{1}{3}$,
由余弦定理:a2=b2+c2-2bccosA得${(4\sqrt{6})^2}={b^2}+{(\frac{5}{3}b)^2}-2b×\frac{5}{3}b×\frac{1}{3}$,
解得:b=6,c=10,
由$cosA=\frac{1}{3}$得,$sinA=\frac{2}{3}\sqrt{2}$,
設(shè)BC邊上的高為h,則$\frac{1}{2}×bcsinA=\frac{1}{2}×ah$,
即$6×10×\frac{2}{3}\sqrt{2}=4\sqrt{6}h$,
所以$h=\frac{10}{3}\sqrt{3}$.

點(diǎn)評(píng) 本題考查三角形中的幾何計(jì)算,考查余弦定理的運(yùn)用,考查三角形面積的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)a∈R,求關(guān)于x的不等式ax2-3x-1≥0(x<0)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合A={x|x≤0或x≥2},B={x|x<1},則集合A∩B=( 。
A.(-∞,0)B.(-∞,0]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,正方形ABCD中,AC與BD交于O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,若$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,則λ+μ的值為(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$x2-ax+(3-a)lnx,a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x-y+1=0垂直,求a的值;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:-5-f(x1)<f(x2)<-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義“函數(shù)y=f(x)是D上的a級(jí)類(lèi)周期函數(shù)”如下:函數(shù)y=f(x),x∈D,對(duì)于給定的非零常數(shù) a,總存在非零常數(shù)T,使得定義域D內(nèi)的任意實(shí)數(shù)x都有af(x)=f(x+T)恒成立,此時(shí)T為f(x)的周期.若y=f(x)是[1,+∞)上的a級(jí)類(lèi)周期函數(shù),且T=1,當(dāng)x∈[1,2)時(shí),f(x)=2x+1,且y=f(x)是[1,+∞)上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{5}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.平行四邊形ABCD中,$\overrightarrow{AB}=λ\overrightarrow{AC}+μ\overrightarrow{DB}$,則λ+μ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,E是邊長(zhǎng)為2的正方形ABCD的AB邊的中點(diǎn),將△AED與△BEC分別沿ED、EC折起,使得點(diǎn)A與點(diǎn)B重合,記為點(diǎn)P,得到三棱錐P-CDE.
(Ⅰ)求證:平面PED⊥平面PCD;
(Ⅱ)求點(diǎn)P到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若等比數(shù)列{an},前n項(xiàng)和Sn,且a2a3=2a1,$\frac{5}{4}$為a4與2a7的等差中項(xiàng),則S4=(  )
A.29B.30C.31D.33

查看答案和解析>>

同步練習(xí)冊(cè)答案