已知m>0,命題p:
x2
16+m
+
y2
16
=1的離心率e≤
3
5
,命題q:x2-mx+4=0有實(shí)數(shù)根,且¬p∨q為假,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡易邏輯
分析:首先求出命題p,q下m的取值范圍,而根據(jù)¬p∨q為假知p真q假,所以分別求出p真,q假時(shí)的m的取值范圍再求交集即可.
解答: 解:∵m>0,∴命題p:
m
16+m
3
5
,解得0<m≤9;
命題q:△=m2-16≥0,解得m≥4;
∵¬p∨q為假;
∴¬p,q都為假;
即p真q假;
0<m≤9
0<m<4

∴0<m<4;
∴實(shí)數(shù)m的取值范圍為(0,4).
點(diǎn)評:考查橢圓的標(biāo)準(zhǔn)方程及橢圓的離心率的定義,以及一元二次方程有解時(shí)判別式△的取值情況,p∨q,¬p的真假和p,q真假的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-ex(a∈R),當(dāng)a=1時(shí),判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線l交拋物線y2=2px(p>0)于A(x1,y1),B(x2,y2)兩點(diǎn).
(1)直線l過拋物線的焦點(diǎn),求證:y1•y2=-p2;
(2)滿足y1•y2=-p2,求證:直線l過拋物線的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1到k這k個(gè)整數(shù)中最少應(yīng)選m個(gè)數(shù)才能保證選出的m個(gè)數(shù)中必存在三個(gè)不同的數(shù)可構(gòu)成一個(gè)三角形的三邊長.(1)若k=10,則m=
 

(2)若k=2012,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n).
(1)則S2=
 
;(2)Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,P,Q,R分別為所在棱的中點(diǎn),則四面體過P,Q,R三點(diǎn)的截面圖形為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1
上到定點(diǎn)(5,0)的距離是9的點(diǎn)的個(gè)數(shù)是(  )
A、0個(gè)B、2個(gè)C、3個(gè)D、4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3
x3-x在(a,10-a2)上有最小值,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M(5,3)到拋物線y=
1
a
x2(a>0)的準(zhǔn)線的距離為6,則拋物線的方程是
 

查看答案和解析>>

同步練習(xí)冊答案