【題目】某工廠修建一個長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.

1)求底面積,并用含x的表達(dá)式表示池壁面積;

2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

【答案】1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800.

【解析】

1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,

其容積為4 800立方米,深度為3米.

可得底面積為1600,池壁面積s=.

2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元.

設(shè)池底長方形長為x米,

則可知總造價s=,x=40時,

.

故可知當(dāng)x=40時,則有可使得總造價最低,

最低造價是268800.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點

(1)求橢圓的方程,并求其離心率;

(2)過點軸的垂線,設(shè)點為第四象限內(nèi)一點且在橢圓上(點不在直線上),點關(guān)于的對稱點為,直線交于另一點.設(shè)為原點,判斷直線與直線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線,圓.以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程;

2)若直線的極坐標(biāo)方程為,設(shè)的交點為、,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某行業(yè)主管部門為了解本行業(yè)中小企業(yè)的生產(chǎn)情況,隨機調(diào)查了100個企業(yè),得到這些企業(yè)第一季度相對于前一年第一季度產(chǎn)值增長率y的頻數(shù)分布表.

的分組

企業(yè)數(shù)

2

24

53

14

7

1)分別估計這類企業(yè)中產(chǎn)值增長率不低于40%的企業(yè)比例、產(chǎn)值負(fù)增長的企業(yè)比例;

2)求這類企業(yè)產(chǎn)值增長率的平均數(shù)與標(biāo)準(zhǔn)差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).(精確到0.01

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):

年份

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

新能源產(chǎn)品年銷售(萬個)

1.6

6.2

17.7

33.1

55.6

(1)請畫出上表中年份代碼與年銷量的數(shù)據(jù)對應(yīng)的散點圖,并根據(jù)散點圖判斷.

中哪一個更適宜作為年銷售量關(guān)于年份代碼的回歸方程類型;

(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2019年某新能源產(chǎn)品的銷售量(精確到0.01).

參考公式:.

參考數(shù)據(jù):,,,,,,,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,03,,49,50的50個個體組成,利用隨機數(shù)表(以下選取了隨機數(shù)表中的第1行和第2行)選取5個個體,選取方法是從隨機數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個個體的編號為( )

78 16 65 72 08 02 63 14 07 02 43 69 69 38 74

32 04 94 23 49 55 80 20 36 35 48 69 97 28 01

A. 05 B. 09 C. 07 D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)的圖像與軸無交點,求的取值范圍;

(2)若方程在區(qū)間上存在實根,求的取值范圍;

(3)設(shè)函數(shù),,當(dāng)時若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三名學(xué)生一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預(yù)錄取生(可在高考中加分錄取),兩次考試過程相互獨立,根據(jù)甲、乙、丙三名學(xué)生的平均成績分析,甲、乙、丙3名學(xué)生能通過筆試的概率分別是0.60.5,0.4,能通過面試的概率分別是0.6,0.6,0.75.

1)求甲、乙、丙三名學(xué)生中恰有一人通過筆試的概率;

2)求經(jīng)過兩次考試后,至少有一人被該高校預(yù)錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD與四邊形BDEF均為菱形,,且

求證:平面BDEF

求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案