【題目】已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)f(x)=x2+x,
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的增函數(shù),h(x)= (f(x)≠1),問是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值,若不存在,請說明理由.

【答案】
(1)解: f(x+1)f(x)=k(x+1)kx=k2(x2+x)

所以(k2﹣1)(x2+x)=0對一切x恒成立,k2﹣1=0,得k=±1;

故f(x)=±x;


(2)解:因f(x)為R上的增函數(shù),

所以f(x)=x,則

而h(x)在(﹣∞,1)和(1,﹣∞)上是減函數(shù),

于是h(x)在[m,m+1]上單調(diào)遞減,

解得m=﹣1或m=2


【解析】(1)利用f(x+1)f(x)=x2+x,對一切x恒成立,得到k;(2)由(1)得到k為1,即f(x)的解析式,代入h(x),判斷函數(shù)在[m,m+1]的單調(diào)性,得到關(guān)于m的方程組解之.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x+λ3﹣x(λ∈R).
(1)當(dāng)λ=﹣4時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若函數(shù)f(x)為偶函數(shù),求實(shí)數(shù)λ的值;
(3)若不等式f(x)≤6在x∈[0,2]上恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)對應(yīng):如圖,其構(gòu)成映射的是(

A.只有①②
B.只有①④
C.只有①③④
D.只有③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一人答一份).現(xiàn)從回收的年齡在歲的問卷中隨機(jī)抽取了份, 統(tǒng)計(jì)結(jié)果如下面的圖表所示.

(1)分別求出的值;

(2)從年齡在答對全卷的人中隨機(jī)抽取人授予“環(huán)保之星”,求年齡在的人中至少有人被授予“環(huán)保之星”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的方程為,在以原點(diǎn)為極點(diǎn), 軸的非負(fù)關(guān)軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)將上的所有點(diǎn)的橫坐標(biāo)和縱坐標(biāo)分別伸長到原來的2倍和倍后得到曲線,求曲線的參數(shù)方程;

(2)若分別為曲線與直線的兩個(gè)動點(diǎn),求的最小值以及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

(2)已知與直線平行的直線過點(diǎn),且與曲線交于兩點(diǎn),試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,,且,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng);

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案