【題目】已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng);

(2)求數(shù)列的前項(xiàng)和

【答案】(1);(2).

【解析】試題分析:(1),且,,成等比數(shù)列,建立關(guān)于公差的方程,解方程可求得,進(jìn)而求出通項(xiàng);(2)由(1)可得,根據(jù)錯(cuò)位相減法結(jié)合等比數(shù)列的前項(xiàng)和公式可求數(shù)列的前項(xiàng)和.

試題解析:(1)由題設(shè)知公差

,,成等比數(shù)列,得,

解得(舍去),故的通項(xiàng)

(2)

,②

②得:,

【易錯(cuò)點(diǎn)晴】本題主要考查等差數(shù)列的通項(xiàng)公式、等比數(shù)列的求和公式以及“錯(cuò)位相減法”求數(shù)列的和,屬于難題. “錯(cuò)位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)f(x)=x2+x,
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的增函數(shù),h(x)= (f(x)≠1),問(wèn)是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)f(x)=ax2+bx+c的圖象頂點(diǎn)坐標(biāo)為(﹣1,﹣4)且f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= ,畫(huà)出函數(shù)g(x)圖象并求單調(diào)區(qū)間;
(3)求函數(shù)g(x)在[﹣3,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品店為了了解氣溫對(duì)銷(xiāo)售量的影響,隨機(jī)記錄了該店1月份中5天的日銷(xiāo)售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程;

2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請(qǐng)用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額.

: 回歸方程, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過(guò)的直線交于一點(diǎn),交軸于點(diǎn),過(guò)點(diǎn)的垂線交于另一點(diǎn),若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=loga (a>0,且a≠1).
(1)證明f(x)為奇函數(shù);
(2)求使f(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;

(Ⅱ)曲線軸于兩點(diǎn),且點(diǎn) 為直線上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案