5.已知函數(shù)f(x)=|x2-2x-3|,若a<b<1,且f(a)=f(b),則u=2a+b的最小值為( 。
A.-4B.3-2$\sqrt{10}$C.3-4$\sqrt{2}$D.-2

分析 畫出函數(shù)的圖象,判斷a,b的范圍,利用直線與圓的位置關(guān)系,通過相切求解最小值.

解答 解:由函數(shù)f(x)的圖象:
可知,a<-1,-1<b<1,
且a2-2a-3=-b2+2b+3,即點(diǎn)P(a,b)滿足不等式組$\left\{{\begin{array}{l}{a<-1}\\{-1<b<1}\\{{{(a-1)}^2}+{{(b-1)}^2}=8}\end{array}}\right.$,
此區(qū)域?yàn)橐?A(-1,-1),B(-2\sqrt{2}+1,1)$為端點(diǎn)
且不含端點(diǎn)的圓弧,
直線u=2a+b與圓弧相切于點(diǎn)C,
則直線u=2a+b過點(diǎn)C時(shí),
u有最小值,2$\sqrt{2}$=$\frac{|2+1-u|}{\sqrt{{2}^{2}+{1}^{2}}}$,(u<0),
解得u=3-2$\sqrt{10}$.
最小值為:$3-2\sqrt{10}$.
故選:B.

點(diǎn)評 本題考查函數(shù)與方程的綜合應(yīng)用,考查函數(shù)的圖象,直線與圓的位置關(guān)系,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用一個(gè)與圓柱母線成600角的平面截圓柱,截口為一個(gè)橢圓,則該橢圓的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一橢圓上任一點(diǎn)P與橢圓上兩定點(diǎn)A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{3}{4}$,則橢圓的離心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(1,1,-4).
(1)計(jì)算2$\overrightarrow{a}$-3$\overrightarrow$和|2$\overrightarrow{a}$-3$\overrightarrow$|;
(2)求<$\overrightarrow{a}$,$\overrightarrow$>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4B.2C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則log3a10=log332.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知四邊形ABCD滿足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是BC的中點(diǎn),將△BAE沿AE翻折成△B1AE,使面B1AE⊥面AECD,F(xiàn)為B1D的中點(diǎn).
(1)證明:B1E∥面ACF;
(2)求四棱錐B1-AECD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知長方體ABCD-A′B′C′D′,AA′=1,AB=$\sqrt{3}$.BC=2,求異面直線A′B與DC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)是定義在R上的偶函數(shù),其圖象是一條連續(xù)不斷的曲線,當(dāng)x>0時(shí),f′(x)>0.若實(shí)數(shù)t滿足f(log2t+f(log${\;}_{\frac{1}{2}}$t)≤2f(2),則t的取值范圍是[$\frac{1}{4}$,4].

查看答案和解析>>

同步練習(xí)冊答案