分析 (1)利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用等比數(shù)列的求和公式即可得出.
解答 解:(1)若q=1,則S4=2S2,與已知矛盾,∴q≠1,
∴$\left\{\begin{array}{l}{S_2}=\frac{{{a_1}(1-{q^2})}}{1-q}=3\\{S_4}=\frac{{{a_1}(1-{q^4})}}{1-q}=15\end{array}\right.$
又q>0,解得$\left\{\begin{array}{l}{a_1}=1\\ q=2\end{array}\right.$
∴${a_n}={2^{n-1}}$.
(2)由(1),可以求得${S_n}={2^n}-1$,
于是${T_n}={2^1}-1+{2^2}-1+…+{2^n}-1={2^1}+{2^2}+…+{2^n}-1-1-…-1$=$\frac{{2(1-{2^n})}}{1-2}-n={2^{n+1}}-n-2$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | ($\frac{\sqrt{2}}{3}$,1) | C. | ($\frac{\sqrt{3}}{3}$,1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | 3π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 2 | 4 | 5 | 6 | 8 |
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件) | 10 | 30 | 60 | 50 | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com