已知函數(shù),
(1)當(dāng)時(shí),判斷并證明的奇偶性;
(2)是否存在實(shí)數(shù),使得是奇函數(shù)?若存在,求出;若不存在,說(shuō)明理由。
(1)偶函數(shù);(2)
【解析】
試題分析:(1)定義法判斷函數(shù)奇偶性是常用的方法,定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的函數(shù),若,則為偶函數(shù),若,則函數(shù)為奇函數(shù);(2)f(x)是R奇函數(shù),則對(duì)任意x∈R恒成立.
試題解析:(1),當(dāng)時(shí),, 3分
, ∴f(x)是偶函數(shù)。 6分
(2)假設(shè)存在實(shí)數(shù)a使得f(x)是奇函數(shù),
∵,,
要使對(duì)任意x∈R恒成立,即恒成立, 9分
有,即恒成立, 12分
∴. 14分
考點(diǎn):函數(shù)奇偶性判斷和應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),其中
(1) 當(dāng)滿足什么條件時(shí),取得極值?
(2) 已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(1)當(dāng)a=3時(shí),求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),.
(1)當(dāng)為何值時(shí),取得最大值,并求出其最大值;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)當(dāng)且時(shí),證明:對(duì),;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時(shí),求函數(shù) 的最小值;
(2)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com