7.設(shè)函數(shù)f(x)=lnx-x+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{\frac{1}{2},2}]$上的極值及最值.

分析 (1)根據(jù)導數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間,
(2)分別求出端點值和極大值,即可求出最值

解答 解:(1)∵f(x)=lnx-x+1,x>0,
∴f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
令f′(x)=0,解得x=1,
當f′(x)>0,即0<x<1,函數(shù)f(x)單調(diào)遞增,
當f′(x)<0,即x>1,函數(shù)f(x)單調(diào)遞減,
故函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
(2)由(1)可知,f(x)在[$\frac{1}{2}$,1)上單調(diào)遞增,在(1,2]上單調(diào)遞減,
當x=1時,函數(shù)有極大值,極大值為f(1)=0,極大值即為最大值,即最大值為0,
∵f($\frac{1}{2}$)=$\frac{1}{2}$-ln2,f(2)=ln2-1,
由于$\frac{1}{2}$-ln2-ln2+1=$\frac{3}{2}$-2ln2>0,
∴f($\frac{1}{2}$)>f(2),
∴f(x)min=ln2-1.

點評 本題考查了導數(shù)和函數(shù)的極值最值的關(guān)系,掌握求最值的步驟是關(guān)鍵,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-ex+1,a∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在x∈R上恒成立,求實數(shù)a的取值集合;
(3)當a=1時,對任意的0<m<n,求證:$\frac{1}{n}$-1<$\frac{f(lnn)-f(lnm)}{n-m}$<$\frac{1}{m}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-(2a+1)x+alnx(a∈R).
(Ⅰ)若a>$\frac{1}{2}$,求y=f(x)的單調(diào)區(qū)間;
(Ⅱ)函數(shù)g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為6的正方形,兩條虛線互相垂直,則該幾何體的體積是 (  )
A.96B.108C.180D.198

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)f(x)=x3-3x在[a,6-a2)上有最小值,則實數(shù)a的取值范圍是(  )
A.(-$\sqrt{5}$,1)B.[-$\sqrt{5}$,1)C.[-2,1)D.(-$\sqrt{5}$,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知(x+$\frac{a}{\sqrt{x}}$)6(a>0)的展開式中常數(shù)項為240,則(x+a)•(x-2a)2的展開式中x2項的系數(shù)為(  )
A.10B.8C.-6D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x+$\frac{m}{x}$,且f(1)=5.
(1)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.
(2)若f(x)≥a對于x∈[4,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=2x3-12x2+18x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)求函數(shù)f(x)在[-1,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={x|y=lg(4-x2)},B={x∈N|$\sqrt{x}$≤3},則A∩B=(  )
A.(0,2)B.[0,2)C.{0,1}D.{0,2}

查看答案和解析>>

同步練習冊答案