設,曲線與
直線在(0,0)點相切。
(Ⅰ)求的值。
(Ⅱ)證明:當時,。
(1)b=-1.,a=0 (2)
【解析】(Ⅰ)由過(0,0)點,得b=-1.
由在(0,0)點的切線斜率為,又
得a=0
(Ⅱ)(證法一)
由均值不等式,當x>0時,故
記,
則
令,則當0<x<2時,
因此在(0,2)內(nèi)是遞減函數(shù),又由,得,所以
因此在(0,2)內(nèi)是遞減函數(shù),又由,得
當0<x<2時
(證法二)
由(Ⅰ)知由均值不等式,當x>0時,故 ①
令,則,,故
即 ②
由①②得,當x>0時,
記,則當0<x<2時,
因此在(0,2)內(nèi)單調(diào)遞減,又,所以即
考點定位:本大題考查導數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,以及最值問題都是課本中要求的重點內(nèi)容,考查構(gòu)造函數(shù)用求導的方法求最值的能力。
科目:高中數(shù)學 來源: 題型:
π |
4 |
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
|
|
5 |
5 |
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省揚州中學高三第四次模擬考試數(shù)學試題 題型:解答題
(本小題10分)已知曲線,過作軸的平行線交曲線于,過作曲線的切線與軸交于,過作與軸平行的直線交曲線于,照此下去,得到點列,和,設,.
(1)求數(shù)列的通項公式;
(2)求證:;
(3)求證:曲線與它在點處的切線,以及直線所圍成的平面圖形的面積與正整數(shù)的值無關.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省高三第四次模擬考試數(shù)學試題 題型:解答題
(本小題10分)已知曲線,過作軸的平行線交曲線于,過作曲線的切線與軸交于,過作與軸平行的直線交曲線于,照此下去,得到點列,和,設,.
(1)求數(shù)列的通項公式;
(2)求證:;
(3)求證:曲線與它在點處的切線,以及直線所圍成的平面圖形的面積與正整數(shù)的值無關.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com