【題目】設(shè)函數(shù),,則下列說法正確的有( )
A.不等式的解集為;
B.函數(shù)在單調(diào)遞增,在單調(diào)遞減;
C.當(dāng)時,總有恒成立;
D.若函數(shù)有兩個極值點(diǎn),則實(shí)數(shù).
【答案】AC
【解析】
對于,的解集為,可得該選項(xiàng)正確;
對于,當(dāng)時,,單調(diào)遞增,可得該選項(xiàng)錯誤;
對于,等價(jià)于,令,求出最大值,可得該選項(xiàng)正確;
對于,函數(shù)有兩個極值點(diǎn),可得,則該選項(xiàng)錯誤.
函數(shù),,
則,,
對于,即,,即,故該選項(xiàng)正確;
對于,,當(dāng)時,,單調(diào)遞增,故該選項(xiàng)錯誤;
對于,當(dāng),時,若,則,
即,即,
令,
則,,
當(dāng),時,,則單調(diào)遞增,
(1),則,單調(diào)遞減,
,
故,,故該選項(xiàng)正確;
對于,若函數(shù)有2個極值點(diǎn),
則有2個零點(diǎn),
即,,
令,則,
在單調(diào)遞增,在單調(diào)遞減,
(1),即,,故該選項(xiàng)錯誤.
綜上,只有正確,
故選:AC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)全體站成一排,甲不站排頭也不站排尾;
(2)全體站成一排,女生必須站在一起;
(3)全體站成一排,男生互不相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng),求函數(shù)的值域;
(2)設(shè)函數(shù),問:當(dāng)取何值時,函數(shù)在上為單調(diào)函數(shù);
(3)設(shè)函數(shù)的零點(diǎn)為,試討論當(dāng)時,是否存在,若存在請求出的取值范圍.()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線l過定點(diǎn).
(1)若直線l與圓C相切,求直線l的方程;
(2)若直線l與圓C相交于P,Q兩點(diǎn),求的面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn).
(1)求異面直線與所成角的余弦值;
(2)求AE和平面的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.
(1)求拋物線的方程;
(2)若過點(diǎn)作互相垂直的兩條直線,,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間和極值;
(2)若直線是曲線的切線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值;
(3)若點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com