【題目】設(shè)函數(shù)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若,求證:時(shí),.
【答案】(I)當(dāng)時(shí),f(x)的單調(diào)減區(qū)間為;當(dāng)時(shí),f(x)的單調(diào)減區(qū)間為,單調(diào)減區(qū)間為(II)見詳解
【解析】
(I)采用分類討論的方法,結(jié)合導(dǎo)數(shù)判斷函數(shù)單調(diào)性,可得結(jié)果.
(II)構(gòu)建新的函數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性,并求最小值,與0比較大小,可得結(jié)果.
解:(I)
若時(shí),則,
f(x)在上單調(diào)遞減;
若時(shí),令解得:
當(dāng)時(shí),
則,f(x)單調(diào)遞減;
當(dāng)時(shí),
則,f(x)單調(diào)遞增;
綜上所述,
當(dāng)時(shí),f(x)的單調(diào)減區(qū)間為
當(dāng)時(shí),f(x)的單調(diào)減區(qū)間為,
單調(diào)減區(qū)間為
(II)當(dāng)時(shí),要證,
即證,
亦即證
令,則
由指數(shù)函數(shù)及冪函數(shù)的性質(zhì)知:
在上是增函數(shù)
,,
在內(nèi)存在唯一的零點(diǎn),
也即在上有唯一零點(diǎn)
設(shè)的零點(diǎn)為,
則,即,
由的單調(diào)性知:
當(dāng)時(shí),
,h(x)為減函數(shù),
當(dāng)時(shí),
,h(x)為增函數(shù),
所以當(dāng),時(shí),
,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢市攝影協(xié)會(huì)準(zhǔn)備在2020年1月舉辦主題為“我們都是追夢(mèng)人”攝影圖片展,通過平常人的鏡頭記錄國強(qiáng)民富的幸福生活,攝影協(xié)會(huì)收到了來自社會(huì)各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如圖:
(1)求頻率直方圖中的值,并根據(jù)頻率直方圖,求這100位攝影者年齡的中位數(shù);
(2)為了展示不同年齡作者眼中的幸福生活,攝影協(xié)會(huì)按照分層抽樣的方法,計(jì)劃從這100件照片中抽出20個(gè)最佳作品,并邀請(qǐng)相應(yīng)作者參加“講述照片背后的故事”座談會(huì).
①在答題卡上的統(tǒng)計(jì)表中填出每組相應(yīng)抽取的人數(shù):
年齡 | |||||
人數(shù) |
②若從年齡在的作者中選出2人把這些圖片和故事整理成冊(cè),求這2人中至少有1人的年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年圣誕節(jié),各地的餐館都出現(xiàn)了用餐需預(yù)定的現(xiàn)象,致使--些人在沒有預(yù)定的情況下難以找到用餐的餐館,針對(duì)這種現(xiàn)象,專家對(duì)人們“用餐地點(diǎn)"以及“性別”作出調(diào)查,得到的情況如下表所示:
在家用餐 | 在餐館用餐 | 總計(jì) | |
女性 | |||
男性 | |||
總計(jì) |
(1)完成上述列聯(lián)表;
(2)根據(jù)表中的數(shù)據(jù),試通過計(jì)算判斷是否有的把握說明“用餐地點(diǎn)”與“性別"有關(guān);
(3)若在接受調(diào)查的所有人男性中按照“用餐地點(diǎn)”進(jìn)行分層抽樣,隨機(jī)抽取人,再在人中抽取人贈(zèng)送餐館用餐券,記收到餐館用餐券的男性中在餐館用餐的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個(gè)人購買家庭轎車已不再是一種時(shí)尚,車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購車一族非常關(guān)心的問題,某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出2009年出售的某款車的使用年限(2009年記)與所支出的總費(fèi)用(萬元)有如表的數(shù)據(jù)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用 | 2.5 | 3.5 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)若這款車一直使用到2020年,估計(jì)使用該款車的總費(fèi)用是多少元?
線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地種植常規(guī)稻和雜交稻,常規(guī)稻的畝產(chǎn)穩(wěn)定為485公斤,今年單價(jià)為3.70元/公斤,估計(jì)明年單價(jià)不變的可能性為,變?yōu)?/span>3.90元/公斤的可能性為,變?yōu)?/span>4.00的可能性為.統(tǒng)計(jì)雜交稻的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如圖①.統(tǒng)計(jì)近10年雜交稻的單價(jià)(單位:元/公斤)與種植畝數(shù)(單位:萬畝)的關(guān)系,得到的10組數(shù)據(jù)記為,并得到散點(diǎn)圖如圖②.
(1)根據(jù)以上數(shù)據(jù)估計(jì)明年常規(guī)稻的單價(jià)平均值;
(2)在頻率分布直方圖中,各組的取值按中間值來計(jì)算,求雜交稻的畝產(chǎn)平均值;以頻率作為概率,預(yù)計(jì)將來三年中至少有二年,雜交稻的畝產(chǎn)超過795公斤的概率;
(3)①判斷雜交稻的單價(jià)(單位:元/公斤)與種植畝數(shù)(單位:萬畝)是否線性相關(guān)?若相關(guān),試根據(jù)以下的參考數(shù)據(jù)求出關(guān)于的線性回歸方程;
②調(diào)查得知明年此地雜交稻的種植畝數(shù)預(yù)計(jì)為2萬畝.若在常規(guī)稻和雜交稻中選擇,明年種植哪種水稻收入更高?
統(tǒng)計(jì)參考數(shù)據(jù):,,,,
附:線性回歸方程,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,(為自然對(duì)數(shù)的底數(shù))
(I)若在上單調(diào)遞減,求的最大值;
(Ⅱ)當(dāng)時(shí),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com