【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=anlog2an , 其前n項和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對于n≥2恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:設(shè)等比數(shù)列的{an}首項為a1,公比為q.

由題意可知: ,

解得: ,

∵數(shù)列為單調(diào)遞增的等比數(shù)列,

∴an=2n


(2)解:bn=anlog2an=n2n,

∴Sn=b1+b2+…+bn=121+222+…+n2n,①

2Sn=122+223+324+…+n2n+1,②

①﹣②,得:﹣Sn=2+22+23+…+2n﹣n2n+1

= ﹣n2n+1=2n+1﹣2﹣n2n+1

∴Sn=(n﹣1)2n+1+2,

若(n﹣1)2≤m(Sn﹣n﹣1)對于n≥2恒成立,

則(n﹣1)2≤m[(n﹣1)2n+1+2﹣n﹣1]=m[(n﹣1)2n+1+1﹣n]對于n≥2恒成立,

= 對于n≥2恒成立,

= ,

∴數(shù)列{ }為遞減數(shù)列,

則當n=2時, 的最大值為

∴m≥

則實數(shù)m得取值范圍為[ ,+∞).


【解析】(1)設(shè)出等比數(shù)列{an}的首項和公比,由已知列式求得首項和公比,則數(shù)列{an}的通項公式可求;(2)把(1)中求得的通項公式代入bn=anlog2an , 利用錯位相減法求得Sn , 代入(n﹣1)2≤m(Sn﹣n﹣1),分離變量m,由單調(diào)性求得最值得答案.
【考點精析】本題主要考查了對數(shù)的運算性質(zhì)和數(shù)列的前n項和的相關(guān)知識點,需要掌握①加法:②減法:③數(shù)乘:;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

時,求曲線在點處切線的方程.

求函數(shù)的單調(diào)區(qū)間.

時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)市場分析,某蔬菜加工點,當月產(chǎn)量為10噸至25噸時,月生產(chǎn)總成本(萬元)可以看出月產(chǎn)量(噸)的二次函數(shù),當月產(chǎn)量為10噸時,月生產(chǎn)成本為20萬元,當月產(chǎn)量為15噸時,月生產(chǎn)總成本最低至17.5萬元.

(I)寫出月生產(chǎn)總成本(萬元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;

(II)已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少噸時,可獲得最大利潤,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為(
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

2014年 2015年 2016年

根據(jù)該折線圖,下列結(jié)論錯誤的是( )

A. 年接待游客量逐年增加

B. 月接待游客量逐月增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,點C在橢圓M: =1(a>b>0)上,若點A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點.線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點P(﹣3,0),直線l過點(0,﹣ ),求直線l的方程;
②若直線l過點(0,﹣1),且與x軸的交點為D.求D點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個“P數(shù)對”,設(shè)函數(shù)的定義域為,且

(1)若的一個“P數(shù)對”,且,求常數(shù)的值;

(2)若(1,1)是的一個“P數(shù)對”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個“P數(shù)對”,且當時,,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是以AB為直徑的圓上兩點,AB=2AD=2,AC=BC,F(xiàn) 是AB上一點,且AF=AB,將圓沿直徑AB折起,使點C在平面ABD的射影E在BD上,已知,

(1)求證:AD⊥平面BCE;

(2)求三棱錐A﹣CFD的體積.

查看答案和解析>>

同步練習(xí)冊答案