【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).ft),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).

(1)令,求x的取值范圍;

(2)若規(guī)定每天中ft)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.

【答案】(1)[0,1];(2).

【解析】

(1)題根據(jù)t的取值范圍,及復合函數(shù)同增的單調(diào)性可得x的取值范圍;

(2)題根據(jù)第(1)題的提示構(gòu)造一個函數(shù)hx=|x-a|+3a+2,然后將絕對值函數(shù)轉(zhuǎn)化成分段函數(shù),考慮單調(diào)性及最大值的取值,再與5比較,即可得到調(diào)節(jié)參數(shù)a的取值范圍.

(1)由題意,0≤t≤24,則1≤t+1≤10,

0=lg1≤lgt+1≤lg10=1

x的取值范圍為:[0,1]

(2)由(1),知:

可設

根據(jù)一次函數(shù)的單調(diào)性,很明顯hx)在[0,a)上單調(diào)遞減,在[a,1]上單調(diào)遞增.

∴用表示函數(shù)的最大值是中最大的值.

,

,即,

解得0a

a的取值范圍為:(0,]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一元二次方程x2-mx+m2+m-1=0有兩實根x1,x2

1)求m的取值范圍;

2)求x1x2的最值;

3)如果,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某物流公司購買了一塊長AM=90米,寬AN=30米的矩形地塊AMPN,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路和停車場,要求頂點C在地塊對角線MN上,BD分別在邊AM、AN上,假設AB長度為x米.若規(guī)劃建設的倉庫是高度與AB的長相同的長方體建筑,問AB長為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點.

(1)k的取值范圍;

(2)12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為R,設集合A={x|x+2)(x-5≤0},,C={x|a+1≤x≤2a-1}

1)求AB,(CRA)∪B;

2)若CAB),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品近一個月內(nèi)(30天)預計日銷量(件)與時間t()的關系如圖1所示,單價(萬元/件)與時間t()的函數(shù)關系如圖2所示,(t為整數(shù))

1)試寫出的解析式;

2)求此商品日銷售額的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中, , 于點 ,且.沿折起到的位置,使

)求證: 平面

)求三棱柱的體積.

)線段上是否存在點,使得平面.若存在,指出點的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點A1-2.

I)求拋物線C的方程,并求其準線方程;

II)是否存在平行于OAO為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

【答案】I)拋物線C的方程為,其準線方程為II)符合題意的直線l 存在,其方程為2x+y-1 =0.

【解析】

試題()求拋物線標準方程,一般利用待定系數(shù)法,只需一個獨立條件確定p的值:(-222p·1,所以p2.再由拋物線方程確定其準線方程:,()由題意設,先由直線OA的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點確定

試題解析:解 (1)將(1,-2)代入y22px,得(-222p·1,

所以p2

故所求的拋物線C的方程為

其準線方程為

2)假設存在符合題意的直線,

其方程為

因為直線與拋物線C有公共點,

所以Δ48t≥0,解得

另一方面,由直線OA的距離

可得,解得

因為-1[,+),1∈[,+),

所以符合題意的直線存在,其方程為

考點:拋物線方程,直線與拋物線位置關系

【名師點睛】求拋物線的標準方程的方法及流程

1)方法:求拋物線的標準方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.

2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.

提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設為y2=mxx2=mym≠0).

型】解答
結(jié)束】
22

【題目】已知橢圓的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上.

(1)求橢圓的方程;

(2)直線過橢圓左焦點交橢圓于,為橢圓短軸的上頂點,當直線時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同

從盒子中隨機取出2個球,求取出的2個球顏色相同的概率.

從盒子中隨機取出4個球,其中紅球個數(shù)分別記為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案