【題目】一個盒子里裝有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同

從盒子中隨機取出2個球,求取出的2個球顏色相同的概率.

從盒子中隨機取出4個球,其中紅球個數(shù)分別記為X,求隨機變量X的分布列和數(shù)學(xué)期望.

【答案】(1) ;(2)見解析

【解析】

1)計算取出2個球的個數(shù),計算取出2個相同顏色的球的個數(shù),結(jié)合古典概型計算公式,計算概率,即可。(2)分別計算出X=0,1,2,3,4對應(yīng)的概率,列出分布列,計算期望,即可。

一個盒子里裝有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同

從盒子中隨機取出2個球,基本事件總數(shù),取出的2個球顏色相同包含的基本事件個數(shù),取出的2個球顏色相同的概率

從盒子中隨機取出4個球,其中紅球個數(shù)分別記為X,則X的可能取值為0,1,23,4,

,

,

,

,

隨機變量X的分布列為:

X

0

1

2

3

4

P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).ft),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).

(1)令,求x的取值范圍;

(2)若規(guī)定每天中ft)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角中,,,點在線段.

(Ⅰ) ,求的長;

)若點在線段上,且,問:當取何值時,的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面ABC,,E是BC的中點,

求異面直線AE與所成的角的大。

若G為中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖象為C,則下列結(jié)論中正確的是(

A.圖象C關(guān)于直線對稱

B.圖象C關(guān)于點對稱

C.函數(shù)在區(qū)間內(nèi)是增函數(shù)

D.把函數(shù)的圖象上點的橫坐標縮短為原來的一半(縱坐標不變)可以得到圖象C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查,瞬時記憶能力包括聽覺記憶能力與視覺記憶能力。某班學(xué)生共有40人,下表為該班學(xué)生瞬時記憶能力的調(diào)查結(jié)果。例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人。

視覺

聽覺

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

b

偏高

2

a

0

1

超常

0

2

1

1

由于部分數(shù)據(jù)丟失,只知道從這40位學(xué)生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(1)試確定a,b的值;

(2)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為X,求隨機變量X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:①若直線,那么直線必平行于平面內(nèi)的無數(shù)條直線;②一個長為,寬為的矩形,其直觀圖的面積為;③若函數(shù)的定義域是,則的定義域是;④定義在上的函數(shù),若,則函數(shù)的圖象關(guān)于點中心對稱.其中所有正確命題的編號為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,平行四邊形的周長為8,其對角線的端點,.

(1)求動點的軌跡的方程;

(2)已知點,記直線與曲線的另一交點為,直線分別與直線交于點.證明:以線段為直徑的圓恒過點.

查看答案和解析>>

同步練習(xí)冊答案