【題目】已知函數(shù)f(x)=2sinx(sinx+cosx).
(1)求函數(shù)的最大值;
(2)求該函數(shù)在區(qū)間[]上的單調遞增區(qū)間.
【答案】(1);(2)[,].
【解析】
(1)利用二倍角的正弦、余弦公式以及輔助角公式,將函數(shù)f(x)化為sin(2x)+1的形式,利用三角函數(shù)的性質即可求解.
(2)利用正弦函數(shù)的單調增區(qū)間[2kπ,2kπ],k∈Z,整體代入即可求解.
(1)由題意,
f(x)=2sinx(sinx+cosx)=2sin2x+2sinxcosx
=1﹣cos2x+sin2x
=sin2x﹣cos2x+1
sin(2x)+1.
∴函數(shù)f(x)的最大值為1.
(2)由題意,正弦函數(shù)的單調遞增區(qū)間為[2kπ,2kπ],k∈Z.
則有2kπ2x2kπ,k∈Z.
化簡,得kπxkπ,k∈Z.
根據(jù)題意,x,
∴該函數(shù)在區(qū)間[]上的單調遞增區(qū)間為[,].
科目:高中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的有( 。
(1)若p∧q為假命題,則p、q均為假命題;
(2)“x=1”是“x2﹣3x+2=0”的充分不必要條件;
(3)若“p∨q”為假命題,則“¬p∧¬q”為真命題.
(4)命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一般地,對于直線及直線外一點,我們有點到直線的距離公式為:”
(1)證明上述點到直線的距離公式
(2)設直線,試用上述公式求坐標原點到直線距離的最大值及取最大值時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為比較甲乙兩地某月12時的氣溫狀況,選取該月5天中12時的氣溫數(shù)據(jù)(單位:)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月12時的平均氣溫低于乙地該月12時的平均氣溫;
②甲地該月12時的平均氣溫高于乙地該月12時的平均氣溫;
③甲地該月12時的氣溫的標準差小于乙地該月12時的氣溫的標準差;
④甲地該月12時的氣溫的標準差大于乙地該月12時的氣溫的標準差.
其中根據(jù)莖葉圖能得到的統(tǒng)計結論的編號為( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A. “”是“”成立的充分不必要條件
B. 命題,則
C. 為了了解800名學生對學校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40
D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
(I)討論的單調性;
(II)若有兩個極值點和,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為降低汽車尾氣的排放量,某廠生產甲乙兩種不同型號的節(jié)排器,分別從甲乙兩種節(jié)排器中各自抽取100件進行性能質量評估檢測,綜合得分情況的頻率分布直方圖如圖所示.
節(jié)排器等級及利潤如表格表示,其中
綜合得分的范圍 | 節(jié)排器等級 | 節(jié)排器利潤率 |
一級品 | ||
二級品 | ||
三級品 |
(1)若從這100件甲型號節(jié)排器按節(jié)排器等級分層抽樣的方法抽取10件,再從這10件節(jié)排器中隨機抽取3件,求至少有2件一級品的概率;
(2)視頻率分布直方圖中的頻率為概率,用樣本估計總體,則
①若從乙型號節(jié)排器中隨機抽取3件,求二級品數(shù)的分布列及數(shù)學期望;
②從長期來看,骰子哪種型號的節(jié)排器平均利潤較大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓: 的離心率為,焦距為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線: 交橢圓于兩點, 是橢圓上一點,直線的斜率為,且, 是線段延長線上一點,且, 的半徑為, 是的兩條切線,切點分別為.求的最大值,并求取得最大值時直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com