18.電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇播放時長(分鐘)廣告播放時長(分鐘)收視人次(萬)
70560
60525
已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(I)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?

分析 (Ⅰ)直接由題意結(jié)合圖表列關(guān)于x,y所滿足得不等式組,化簡后即可畫出二元一次不等式所表示的平面區(qū)域;
(Ⅱ)寫出總收視人次z=60x+25y.化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 (Ⅰ)解:由已知,x,y滿足的數(shù)學(xué)關(guān)系式為$\left\{\begin{array}{l}70x+60y≤600\\ 5x+5y≥30\\ x≤2y\\ x≥0\\ y≥0\end{array}\right.$,即$\left\{\begin{array}{l}7x+6y≤60\\ x+y≥6\\ x-2y≤0\\ x≥0\\ y≥0\end{array}\right.$.
該二元一次不等式組所表示的平面區(qū)域如圖:

(Ⅱ)解:設(shè)總收視人次為z萬,則目標(biāo)函數(shù)為z=60x+25y.
考慮z=60x+25y,將它變形為$y=-\frac{12}{5}x+\frac{z}{25}$,這是斜率為$-\frac{12}{5}$,隨z變化的一族平行直線.
$\frac{z}{25}$為直線在y軸上的截距,當(dāng)$\frac{z}{25}$取得最大值時,z的值最大.
又∵x,y滿足約束條件,
∴由圖可知,當(dāng)直線z=60x+25y經(jīng)過可行域上的點(diǎn)M時,截距$\frac{z}{25}$最大,即z最大.
解方程組$\left\{\begin{array}{l}7x+6y=60\\ x-2y=0\end{array}\right.$,得點(diǎn)M的坐標(biāo)為(6,3).
∴電視臺每周播出甲連續(xù)劇6次、乙連續(xù)劇3次時才能使總收視人次最多.

點(diǎn)評 本題考查解得線性規(guī)劃的應(yīng)用,考查數(shù)學(xué)建模思想方法及數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{4}$個單位長度,所得函數(shù)圖象的一條對稱軸方程是( 。
A.x=$\frac{2}{3}$πB.x=-$\frac{1}{12}$πC.x=$\frac{1}{3}$πD.x=$\frac{5}{12}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},則(A∪B)∩C=(  )
A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|-1≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N+),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nb2n-1}的前n項(xiàng)和(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,點(diǎn)A在雙曲線的漸近線上,△OAF是邊長為2的等邊三角形(O為原點(diǎn)),則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=$\sqrt{5}$,|$\overrightarrow{c}$|=1,若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=0,則|$\overrightarrow{a}$-$\overrightarrow$|的取值范圍是( 。
A.[1,2]B.[2,4]C.[$\sqrt{7}$-1,$\sqrt{7}$+1]D.[$\sqrt{5}$-1,$\sqrt{5}$+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=$\sqrt{3}$sinx+cosx,0≤x<$\frac{π}{2}$,則f(x)的最大值為(  )
A.1B.2C.$\sqrt{3}$+1D.$\sqrt{3}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.《數(shù)學(xué)選修1-2》的知識結(jié)構(gòu)圖如圖所示,則“直接證明與間接證明”的“上位”要素是( 。
A.推理與證明B.統(tǒng)計案例
C.數(shù)系的擴(kuò)充與復(fù)數(shù)的引入D.框圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱柱ABC-A1B1C1中,$AB=BC=\sqrt{5},AC=2$且點(diǎn)A1在底面ABC上的射影O恰是線段AC的中點(diǎn),$A{A_1}=\sqrt{5}$.
(1)判斷A1B與B1C是否垂直,并證明你的結(jié)論;
(2)求點(diǎn)A1到平面BCC1B1的距離.

查看答案和解析>>

同步練習(xí)冊答案