4.關(guān)于x的不等式$\frac{2{x}^{2}-x+k}{{x}^{2}-x+3}$>1對一切實數(shù)x恒成立,則k的取值范圍是(3,+∞).

分析 因為x2-x+3>0恒成立,所以原不等式化為2x2-x+k>x2-x+3,即k>-x2+3,根據(jù)二次函數(shù)的性質(zhì)即可求出答案.

解答 解:因為x2-x+3>0恒成立,
所以原不等式化為2x2-x+k>x2-x+3,即k>-x2+3,當x=0時,-x2+3有最大值,即最大值為3,
所以k>3,
故k的取值范圍(3,+∞),
故答案為:(3,+∞)

點評 本題考查了不等式恒成立的問題,分離參數(shù),求出函數(shù)的最值是關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.關(guān)于x方程$|{\begin{array}{l}{sinx}&1\\ 1&{4cosx}\end{array}}|$=0的解為x=$\frac{π}{12}+kπ$或x=$\frac{5π}{12}+kπ$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,若關(guān)于x的方程f2(x)-af(x)=0恰有三個不同的實數(shù)解,則實數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x),且當f(x)≠0時恒有$\frac{f(-x)}{f(x)}$=1成立,則( 。
A.f(x)必為偶函數(shù)B.f(x)必為奇函數(shù)
C.f(x)必為既奇又偶函數(shù)D.不能確定f(x)的奇偶性

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a=$\sqrt{3}$,c=2,B=150°,則邊b的長為( 。
A.13B.$\sqrt{13}$C.$\frac{\sqrt{22}}{2}$D.$\sqrt{22}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若|$\overrightarrow{AB}$|=10,|$\overrightarrow{AC}$|=8,則|$\overrightarrow{BC}$|的取值范圍是[2,18].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四棱錐A-DBCE中,底面DBCE為平行四邊形,F(xiàn)為AE的中點,求證:AB∥平面DCF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,已知a,b,c成等比數(shù)列.若 $\frac{sinA}{sinC}$-1=$\frac{a-b}{a+c}$,判斷△ABC的形狀(說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”
(1)布林函數(shù)$f(x)=\sqrt{x}$的等域區(qū)間是:[0,1]
(2)若函數(shù)$f(x)=k+\sqrt{x+2}$是布林函數(shù),則實數(shù)k的取值范圍是:$({-\frac{9}{4},-2})$.

查看答案和解析>>

同步練習冊答案