12.直線y=$\sqrt{3}$x+1被圓x2+y2-8x-2y+1=0所截得的弦長等于4.

分析 先求出圓心和半徑,再由出圓心到直線的距離,由此利用勾股定理能求出直線被圓所截得的弦長.

解答 解:圓x2+y2-8x-2y+1=0的圓心C(4,1),半徑r=$\frac{1}{2}\sqrt{64+4-4}$=4,
圓心C(4,1)到直線y=$\sqrt{3}$x+1的距離d=$\frac{|4\sqrt{3}-1+1|}{\sqrt{3+1}}$=2$\sqrt{3}$,
∴直線y=$\sqrt{3}$x+1被圓x2+y2-8x-2y+1=0所截得的弦長為:
|AB|=2$\sqrt{{r}^{2}-jxlxhx3^{2}}$=2$\sqrt{16-12}$=4.
故答案為:4.

點評 本題考查弦長的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意圓的性質(zhì)、點到直線的距離公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的半焦距為c,原點到直線l:ax+by=ab的距離等于$\frac{1}{3}$c+1,則c的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z1=a-i(a∈R),z2=-1+i,若z1•z2為純虛數(shù),則a等于( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為4+2$\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)不過原點O的直線l與該橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點K,過K點作曲線C:x2-4x+3+y2=0的切線,切點M到x軸的距離為$\frac{2\sqrt{2}}{3}$
(Ⅰ)求拋物線E的方程
(Ⅱ)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O為坐標(biāo)原點)
(i)求證:直線AB上必過定點,并求出該定點Q的坐標(biāo)
(ii)過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=sin(2x-\frac{π}{6})+2{cos^2}x$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間$[0\;,\;\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\sqrt{3}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,角A滿足f(A)=1+$\sqrt{3}$,若a=3,sinB=2sinC,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinωx,cosωx-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosωx,cosωx+$\frac{\sqrt{2}}{2}$)(ω>0),若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且f(x)的圖象上兩相鄰對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足c=$\sqrt{3}$,f(C)=$\frac{1}{2}$,b=2a,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=asin(x+φ),p:“f($\frac{π}{2}$)=0”是q:“f(x)是偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案