已知四邊形ABCD是正方形,若PA⊥平面ABCD,且PA=BC=2.求:
(1)求二面角A-CD-P的大;
(2)VP-ABC
考點(diǎn):二面角的平面角及求法,棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:(1)由已知得∠PDA是二面角A-CD-P的平面角,由此能求出二面角A-CD-P的大。
(2)由PA⊥平面ABC,且PA=2,S△ABC=
1
2
×2×2
=2,能求出VP-ABC
解答: 解:(1)∵四邊形ABCD是正方形,PA⊥平面ABCD,
∴CD⊥AD,
由三垂線定理得CD⊥PD,
∴∠PDA是二面角A-CD-P的平面角,
∵PA=BC=2,
∴∠PDA=45°,
∴二面角A-CD-P的大小為45°.
(2)∵PA⊥平面ABC,且PA=2,S△ABC=
1
2
×2×2
=2,
∴VP-ABC=
1
3
×PA×S△ABC
=
1
3
×2×2
=
4
3
點(diǎn)評(píng):本題考查二面角的大小的求法,考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1+a2=3,a2+a3=6,則a3a5=( 。
A、4B、8C、64D、128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-3,2)與向量
b
=(x,-5)
(1)若向量
a
⊥向量
b
,求實(shí)數(shù)x的值; 
(2)若向量
a
與向量
b
的夾角為鈍角,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x+
1
x
)=x2+
1
x2
,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,1),
b
=(1,-1),將向量
c
=(2,3)表示成x
a
+y
b
的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過(guò)點(diǎn)(4,-
10
).
①求雙曲線方程.
②若直線l:x-2y+6=0與雙曲線相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=|1-
1
x
-
1
x-1
|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C1的左頂點(diǎn)為A,上頂點(diǎn)為B,F(xiàn)1到直線AB的距離為
7
7
|OB|.
(1)求橢圓C1的方程;
(2)若橢圓C1方程為:
x2
m2
+
y2
n2
=1(m>n>0),橢圓C2方程為:
x2
m2
+
y2
n2
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C1的3倍相似橢圓,若直線y=kx+b與兩橢圓C1、C2交于四點(diǎn)(依次為P、Q、R、S),且
PS
+
RS
=2
QS
,試求動(dòng)點(diǎn)E(k,b)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)數(shù),若f(x)=2f′(x),則
sin2x-cos2x
cos2x
的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案