精英家教網 > 高中數學 > 題目詳情
2.已知邊長為2的正方形ABCD所在的平面與△CDE所在平面交于CD,且AE⊥平面CDE,AE=1.
(Ⅰ)求證:平面ABCD⊥平面ADE;
(Ⅱ)設點F為棱BC上一點,當點F滿足CF=2FB時,求直線AD與面AEF所成角的正弦值.

分析 (I)由AE⊥平面CDE得出CD⊥AE,又CD⊥AD,得出CD⊥平面ADE,于是平面ABCD⊥平面ADE;
(II)以D為原點建立空間直角坐標系,求出$\overrightarrow{DA}$和平面AEF的法向量$\overrightarrow{n}$,則線AD與面AEF所成角的正弦值為|cos<$\overrightarrow{n},\overrightarrow{DA}$>|.

解答 證明:(1)∵AE⊥平面CDE,CD?平面CDE,
∴AE⊥CD.
∵四邊形ABCD是正方形,∴CD⊥AD.
又AD?平面ADE,AE?平面ADE,AD∩AE=A,
∴CD⊥平面ADE,又CD?平面ABCD,
∴平面ABCD⊥平面ADE.
(II)過A作z軸∥AE,則z軸⊥平面CDE.
∵CD⊥平面ADE,DE?平面ADE,
∴CD⊥DE.
以D為原點建立如圖所示的空間直角坐標系,
則D(0,0,0),A(0,$\sqrt{3}$,1),E(0,$\sqrt{3}$,0),F(2,$\frac{2\sqrt{3}}{3}$,$\frac{2}{3}$).
∴$\overrightarrow{DA}$=(0,$\sqrt{3}$,1),$\overrightarrow{EA}$=(0,0,1),$\overrightarrow{EF}$=(2,-$\frac{\sqrt{3}}{3}$,$\frac{2}{3}$).
設平面AEF的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EA}=0}\\{\overrightarrow{n}•\overrightarrow{EF}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{z=0}\\{2x-\frac{\sqrt{3}}{3}y+\frac{2}{3}z=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,2$\sqrt{3}$,0).
∴$\overrightarrow{n}•\overrightarrow{DA}$=6,|$\overrightarrow{n}$|=$\sqrt{13}$,|$\overrightarrow{DA}$|=2,
∴cos<$\overrightarrow{n},\overrightarrow{DA}$>=$\frac{\overrightarrow{n}•\overrightarrow{DA}}{|\overrightarrow{n}||\overrightarrow{DA}|}$=$\frac{3\sqrt{13}}{13}$.
∴直線AD與面AEF所成角的正弦值為$\frac{3\sqrt{13}}{13}$.

點評 本土你考查了面面垂直的判定,線面角的計算,考查了空間向量的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.已知a,b是直線,α、β、γ是不同的平面,有以下四個命題:
①a⊥α,b⊥β,a⊥b,則α⊥β;
②α⊥γ,β⊥γ,則α∥β;
③b⊥α,β⊥α,則b∥β;
④α∥β,α∩γ=a,β∩γ=b,則a∥b,
其中正確的命題序號是( 。
A.①④B.①③C.①②④D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.有如下命題:
①“a>b>0”是“$\frac{1}{a}$<$\frac{1}$”成立的充分不必要條件;
②a>b>0,t>0,則$\frac{a}$<$\frac{a+t}{b+t}$;
③a5+b5≥a2b3+a3b2對一切正實數a,b均成立;
④“$\frac{a}$>1”是“a-b>0”成立的必要非充分條件.
其中正確的命題為①③(填寫正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.計算:
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設△ABC的內角A,B,C的對邊分別為a,b,c,且a=2,b=3,cosC=$\frac{1}{3}$,則sinA=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.函數f(x)=Asin(?x+φ)(A>0,0<?<4,|φ|<$\frac{π}{2}$)過點(0,$\frac{1}{2}$),且當x=$\frac{π}{6}$時,函數f(x)取得最大值1.
(1)將函數f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數g(x),求函數g(x)的表達式;
(2)在(1)的條件下,函數h(x)=f(x)+g(x)+2cos2x-1,如果對于?x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知(x+1)6(x-a)2的展開式中含x2項的系數是37,(a>0),則a的值等于2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.設Sn是等差數列{an}的前n項和,若S1009-S1007=2,則S2016=( 。
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.解方程組$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2x-6y+6=0}\\{{x}^{2}+{y}^{2}-6x-10y+30=0}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案