【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

【答案】解:如圖,以D為坐標(biāo)原點(diǎn),線段DA的長(zhǎng)為單位長(zhǎng),射線DA為x軸的正半軸建立空間直角坐標(biāo)系D﹣xyz;
(Ⅰ)依題意有Q(1,1,0),C(0,0,1),P(0,2,0);
=(1,1,0), =(0,0,1), =(1,﹣1,0),
所以 =0, =0;
即PQ⊥DQ,PQ⊥DC,
故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(Ⅱ)依題意,有B(1,0,1),
=(1,0,0), =(﹣1,2,﹣1);
設(shè) =(x,y,z)是平面的PBC法向量,
,
因此可取 =(0,﹣1,﹣2);
設(shè) 是平面PBQ的法向量,則
可取 =(1,1,1),
所以cos< >=﹣ ,
故二面角角Q﹣BP﹣C的余弦值為﹣

【解析】首先根據(jù)題意以D為坐標(biāo)原點(diǎn),線段DA的長(zhǎng)為單位長(zhǎng),射線DA為x軸的正半軸建立空間直角坐標(biāo)系D﹣xyz;
(Ⅰ)根據(jù)坐標(biāo)系,求出 、 的坐標(biāo),由向量積的運(yùn)算易得 =0, =0;進(jìn)而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得證明;(Ⅱ)依題意結(jié)合坐標(biāo)系,可得B、 的坐標(biāo),進(jìn)而求出平面的PBC的法向量 與平面PBQ法向量 ,進(jìn)而求出cos< , >,根據(jù)二面角與其法向量夾角的關(guān)系,可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的首項(xiàng)a1為常數(shù),且an+1=3n﹣2an , (n∈N*
(1)證明:{an }是等比數(shù)列;
(2)若a1= ,{an}中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫出這三項(xiàng),若不存在說明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣ sinx cosx+1 (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠每日生產(chǎn)一種大型產(chǎn)品1件,每件產(chǎn)品的投入成本為2000元.產(chǎn)品質(zhì)量為一等品的概率為,二等品的概率為,每件一等品的出廠價(jià)為10000元,每件二等品的出廠價(jià)為8000元.若產(chǎn)品質(zhì)量不能達(dá)到一等品或二等品,除成本不能收回外,沒生產(chǎn)一件產(chǎn)品還會(huì)帶來1000元的損失.

(1)求在連續(xù)生產(chǎn)3天中,恰有一天生產(chǎn)的兩件產(chǎn)品都為一等品的的概率;

(2)已知該廠某日生產(chǎn)的2件產(chǎn)品中有一件為一等品,求另一件也為一等品的概率;

(3)求該廠每日生產(chǎn)該種產(chǎn)品所獲得的利潤(rùn)(元)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)設(shè),求的最小值;

(2)若曲線僅有一個(gè)交點(diǎn),證明:曲線在點(diǎn)處有相同的切線,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為自然對(duì)數(shù)的底數(shù)),, .

(1)若的極值點(diǎn),且直線分別與函數(shù)的圖象交于,求兩點(diǎn)間的最短距離;

(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程x2+y2﹣ax+y+1=0表示圓;命題q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直線,若p∨q為真命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F(xiàn)1 , F2是雙曲線C: (a>0,b>0)的左、右焦點(diǎn),過F1的直線l與C的左、右兩支分別交于A,B兩點(diǎn).若△ABF2為等邊三角形,則雙曲線的離心率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB= ,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°.

(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

同步練習(xí)冊(cè)答案