【題目】設(shè)函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若是的極值點(diǎn),且直線分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.
【答案】(1)1(2)
【解析】試題分析:
(1)結(jié)合題意可得|PQ|=et+sint2t.令h(x)=ex+sinx2x,結(jié)合函數(shù)的性質(zhì)可得兩點(diǎn)間的最短距離是1;
(2)構(gòu)造函數(shù),結(jié)合題意可得實(shí)數(shù)的取值范圍是.
試題解析:
(1)因?yàn)?/span>F(x)=ex+sinxax,所以F′(x)=ex+cosxa,
因?yàn)?/span>x=0是F(x)的極值點(diǎn),所以F′(0)=1+1a=0,a=2.
又當(dāng)a=2時(shí),若x<0,F′(x)=ex+cosxa<1+12=0,
所以F′(x)在(0,+∞)上為增函數(shù),所以F′(x)>F′(0)=1+12=0,所以x=0是F(x)的極小值點(diǎn),
所以a=2符合題意,所以|PQ|=et+sint2t.令h(x)=ex+sinx2x,即h′(x)=ex+cosx2,
因?yàn)?/span>h′′(x)=exsinx,當(dāng)x>0時(shí),ex>1,1sinx1,
所以h′′(x)=exsinx>0,所以h′(x)=ex+cosx2在(0,+∞)上遞增,
所以h′(x)=ex+cosx2>h′(0)=0,∴x∈[0,+∞)時(shí),h(x)的最小值為h(0)=1,所以|PQ|min=1.
(2)令,
則,
,
因?yàn)?/span>當(dāng)時(shí)恒成立,
所以函數(shù)在上單調(diào)遞增,∴當(dāng)時(shí)恒成立;
故函數(shù)在上單調(diào)遞增,所以在時(shí)恒成立.
當(dāng)時(shí), , 在單調(diào)遞增,即.
故時(shí)恒成立.
當(dāng)時(shí),因?yàn)?/span>在單調(diào)遞增,所以總存在,使在區(qū)間上,導(dǎo)致在區(qū)間上單調(diào)遞減,而,所以當(dāng)時(shí), ,這與對恒成立矛盾,所以不符合題意,故符合條件的的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐P﹣ABCD,B1為PB的中點(diǎn),D1為PD的中點(diǎn),則兩個(gè)棱錐A﹣B1CD1 , P﹣ABCD的體積之比是( )
A.1:4
B.3:8
C.1:2
D.2:3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: =1(a>b>0)的離心率為 ,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為 .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn).求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求證:數(shù)列為等比數(shù)列;
(2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;
(3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓M: =1(a>b>0)的離心率為 ,點(diǎn)A(a,0),B(0,﹣b),原點(diǎn)O到直線AB的距離為 .
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l:y=2x+m與橢圓M相交于C、D不同兩點(diǎn),經(jīng)過線段CD上點(diǎn)E的直線與y軸相交于點(diǎn)P,且有 =0,| |=| |,試求△PCD面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)求不等式﹣x2﹣2x+3<0的解集(用集合或區(qū)間表示) (Ⅱ)求不等式|x﹣3|<1的解集(用集合或區(qū)間表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:(x+3)2+y2=1和圓C2:(x﹣3)2+y2=9,動圓M同時(shí)與圓C1及圓C2相外切,求動圓圓心M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2+ax+1(a∈R). (Ⅰ)當(dāng)a= 時(shí),求不等式f(x)<3的解集;
(Ⅱ)當(dāng)0<x<2時(shí),不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求關(guān)于x的不等式f(x)﹣ a2﹣1>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com