【題目】選修4-4:坐標系與參數(shù)方程

已知點在橢圓上,將射線繞原點逆時針旋轉,所得射線交直線于點.以為極點,軸正半軸為極軸建立極坐標系.

(1)求橢圓和直線的極坐標方程;

(2)證明::中,斜邊上的高為定值,并求該定值.

【答案】(1) ,.

(2) h為定值,且h=.

【解析】分析:(1)直接利用 即可得橢圓和直線的極坐標方程;(2)(1)得,

代入,化簡即可得結果.

詳解(1)由x=ρcosθ,y=ρsinθ得

橢圓C極坐標方程為ρ2(cos2θ+2sin2θ)=4,即ρ2

直線l的極坐標方程為ρsinθ=2,即ρ=

(2)證明:設A(ρA,θ),B(ρB,θ+),-<θ<

由(1)得|OA|2=ρ,|OB|2=ρ,

由S△OAB×|OA|×|OB|=×|AB|×h可得,

h2=2.

故h為定值,且h=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1時,求上的單調區(qū)間;

2, 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程表示焦點在x軸上的橢圓;命題q:雙曲線的離心率e.若命題“pq”為真命題,“pq”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次奧運會男子羽毛球單打比賽中,運動員甲和乙進入了決賽.假設每局比賽甲獲勝的概率為0.6,乙獲勝的概率為0.4.利用計算機模擬試驗,估計甲獲得冠軍的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,4,2,且最大角的余弦值是,則的面積等于______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】連續(xù)拋擲同一顆骰子3次,則3次擲得的點數(shù)之和為9的概率是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有7個球,其中4個白球,3個紅球,從袋中任意取出2個球,求下列事件的概率:

(1) 取出的2個球都是白球;

(2)取出的2個球中1個是白球,另1個是紅球.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線和曲線的極坐標方程;

(2)已知射線),將射線順時針方向旋轉得到,且射線與曲線交于兩點,射線與曲線交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)當時,證明:;

3)設函數(shù)的圖象與直線的兩個交點分別為,,的中點的橫坐標為,證明:.

查看答案和解析>>

同步練習冊答案