A. | 3 | B. | $\frac{3}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{2}}{4}$ |
分析 如圖所示,建立空間直角坐標系.設該垂面與BB1相交于點E(2,2,t),由$\overrightarrow{{D}_{1}M}$⊥$\overrightarrow{AE}$,可得$\overrightarrow{{D}_{1}M}$•$\overrightarrow{AE}$=0,可得t.同理可得該垂面與BC相交于點F.
解答 解:如圖所示,建立空間直角坐標系.
D(0,0,0),A(2,0,0),D1(0,0,2),M(2,1,0),
$\overrightarrow{{D}_{1}M}$=(2,1,-2),
設該垂面與BB1相交于點E(2,2,t),則$\overrightarrow{AE}$=(0,2,t),由$\overrightarrow{{D}_{1}M}$⊥$\overrightarrow{AE}$,可得$\overrightarrow{{D}_{1}M}$•$\overrightarrow{AE}$=2-2t=0,可得t=1.
因此該垂面與BB1相交于點E(2,2,1),.
同理可得該垂面與BC相交于點F(1,2,0).
∴該垂面被正方體截得部分的面積=$\frac{1}{2}$×$\sqrt{2}×$$\sqrt{{2}^{2}+{1}^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{3}{2}$.
故選:B.
點評 本題考查了等腰三角形的性質、勾股定理、向量垂直與數(shù)量積的關系、三角形面積的計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2i | C. | 2i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0) | B. | [-1,0) | C. | (-1,0) | D. | [-1,0] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\frac{π}{4}$) | B. | (1,$\frac{3π}{4}$) | C. | (1,$\frac{π}{4}$) | D. | (1,$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com