1.在三棱錐P-ABC中,PA=4,∠PBA=∠PCA=90°,△ABC是邊長為2的等邊三角形,則三棱錐P-ABC的外接球球心到平面ABC的距離是( 。
A.$\frac{{2\sqrt{6}}}{3}$B.$\frac{{\sqrt{33}}}{3}$C.$\frac{{4\sqrt{6}}}{3}$D.$\frac{{2\sqrt{33}}}{3}$

分析 由圓周角定理及球的性質(zhì)可判斷PA為球的直徑,利用余弦定理求出PA與平面ABC所成角的大小,即可得出球心到平面ABC的距離.

解答 解:∵∠PBA=∠PCA=90°,
∴PA為平面PAB所在圓的截面的直徑,
同理PA也是PBC所在圓的截面的直徑,
∴PA的中點(diǎn)為外接球的球心,
由勾股定理得PB=PC=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
取BC的中點(diǎn)D,連接AD,
則∠PAD為PA與平面ABC所成的角,
經(jīng)計(jì)算得AD=$\sqrt{3}$,PD=$\sqrt{11}$,
∴cos∠PAD=$\frac{16+3-11}{2×4×\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴sin∠PAD=$\frac{\sqrt{6}}{3}$,
∴球心O到平面ABC的距離d=$\frac{1}{2}$PAsin∠PAD=$\frac{2\sqrt{6}}{3}$.
故選A.

點(diǎn)評 本題考查了棱錐的結(jié)構(gòu)特征,棱錐與外接球的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果x,y滿足$\left\{{\begin{array}{l}{2x-y+1≤0}\\{x-y+1≥0}\\{2x+y+5≥0}\end{array}}\right.$,則$z=\frac{x+2y-3}{x+1}$的取值范圍是( 。
A.$({-∞,-\frac{8}{5}}]∪[{3,+∞})$B.$[{-1,\frac{1}{7}}]$C.(-1,0]∪[3,+∞)D.(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列圖象可以作為函數(shù)f(x)=$\frac{x}{{x}^{2}+a}$的圖象的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=ax2+(b-a)x+c-b(其中a>b>c),若a+b+c=0,x1、x2為f(x)的兩個(gè)零點(diǎn),則|x1-x2|的取值范圍為( 。
A.($\frac{3}{2}$,2$\sqrt{3}$)B.(2,2$\sqrt{3}$)C.(1,2)D.(1,2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.哈六中在2017年3月中旬舉辦了一次知識競賽,經(jīng)過層層篩選,最后五名同學(xué)進(jìn)入了總決賽.在進(jìn)行筆答題知識競賽中,最后一個(gè)大題是選做題,要求參加競賽的五名選手從2道題中選做一道進(jìn)行解答,假設(shè)這5位選手選做每一題的可能性均為$\frac{1}{2}$.
(Ⅰ)求其中甲乙2位選手選做同一道題的概率.
(Ⅱ)設(shè)這5位選手中選做第1題的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y滿足:$\left\{{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}}\right.$,若目標(biāo)函數(shù)z=ax+y取最大值時(shí)的最優(yōu)解有無數(shù)多個(gè),則實(shí)數(shù)a的值是(  )
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)$f(x)=|{x+a+1}|+|{x-\frac{4}{a}}|,(a>0)$.
(Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}和{bn}中,已知${a_1}{a_2}{a_3}…{a_n}={2^{b_n}}(n∈N*)$,且a1=2,b3-b2=3,若數(shù)列{an}為等比數(shù)列.
(Ⅰ)求a3及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令${c_n}=\frac{{2{b_n}}}{n^2}$,是否存在正整數(shù)m,n(m≠n),使c2,cm,cn成等差數(shù)列?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=2cos2x的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[0,\frac{a}{3}]$和$[2a,\frac{7π}{6}]$上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[$\frac{π}{3}$,$\frac{π}{2}$].

查看答案和解析>>

同步練習(xí)冊答案