分析 由已知得x∈(2kπ,2kπ+$\frac{π}{4}$)∪(2k$π+\frac{5π}{4}$,2k$π+\frac{3}{2}π$)∪(2k$π+\frac{3π}{2}$,2kπ+π),k∈Z,由此能求出函數(shù)y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$的值域.
解答 解:∵sinx-cosx<0,
∴x∈(2kπ,2kπ+$\frac{π}{4}$)∪(2k$π+\frac{5π}{4}$,2k$π+\frac{3}{2}π$)∪(2k$π+\frac{3π}{2}$,2kπ+π),k∈Z,
當(dāng)x∈(2kπ,2k$π+\frac{π}{4}$),k∈Z時(shí),
y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$=1+1+1=3,
當(dāng)x∈(2kπ+$\frac{5π}{4}$,2kπ+$\frac{3π}{2}$),k∈Z時(shí),
y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$=-1-1+1=-1,
當(dāng)x∈(2k$π+\frac{3π}{2}$,2kπ+π),k∈Z時(shí),
y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$=-1+1-1=-1.
∴函數(shù)y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$的值域?yàn)閧-1,3}.
故答案為:{-1,3}.
點(diǎn)評(píng) 本題考查三角函數(shù)的值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意三角函數(shù)的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:解答題
選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系(與平面直角坐標(biāo)系的單位長(zhǎng)度相同),當(dāng)時(shí),求直線的極坐標(biāo)方程;
(Ⅱ)已知點(diǎn),直線與橢圓相交于點(diǎn)、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
喜愛(ài)打籃球 | 不喜愛(ài)打籃球 | 合計(jì) | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{13}{3}$ | D. | $\frac{17}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com