【題目】某省的一個(gè)氣象站觀測點(diǎn)在連續(xù)4天里記錄的AQI指數(shù)M與當(dāng)天的空氣水平可見度(單位:cm)的情況如表1:

900

700

300

100

0.5

3.5

6.5

9.5

該省某市2017年11月份AQI指數(shù)頻數(shù)分布如表2:

頻數(shù)(天)

3

6

12

6

3

<>(1)設(shè),若之間是線性關(guān)系,試根據(jù)表1的數(shù)據(jù)求出關(guān)于的線性回歸方程;

(2)小李在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)存在相關(guān)關(guān)系如表3:

日均收入(元)

-2000

-1000

2000

6000

8000

根據(jù)表3估計(jì)小李的洗車店2017年11月份每天的平均收入.

附參考公式:,其中,.

【答案】(1);(2)2400

【解析】試題分析:(1)計(jì)算,根據(jù)題中公式計(jì)算,從而得解;

(2)由AQI指數(shù)頻數(shù)分布可知虧損和盈利的天數(shù),進(jìn)而利用收入乘以天數(shù)求和后求均值即可.

試題解析:

(1),,

,

.

,,

關(guān)于的線性回歸方程為.

(2)根據(jù)表3可知,該月30天中有3天每天虧損2000元,有6天每天虧損1000元,有12天每天收入2000元,有6天每天收入6000元,有3天每天收入8000元,估計(jì)小李洗車店2017年11月份每天的平均收入為 (元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時(shí)分別為1,2,加工一件乙設(shè)備所需工時(shí)分別為2,1.A、B兩種設(shè)備每月有效使用臺時(shí)數(shù)分別為400和500,分別用表示計(jì)劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).

(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的離心率為2,焦點(diǎn)到漸近線的距離等于,過右焦點(diǎn)F2的直線l交雙曲線于AB兩點(diǎn),F1為左焦點(diǎn).

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若將判斷框內(nèi)“”改為關(guān)于的不等式“”且要求輸出的結(jié)果不變,則正整數(shù)的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)已知的解集為,求實(shí)數(shù)的值;

2)已知,設(shè)是關(guān)于的方程的兩根,且,求實(shí)數(shù)的值;

3)已知滿足,且關(guān)于的方程的兩實(shí)數(shù)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,的中點(diǎn),.

(Ⅰ)證明:⊥平面;

(Ⅱ)求二面角的大小;

(Ⅲ)線段上是否存在一點(diǎn),使得直線平面. 若存在,確定點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市周年慶典,設(shè)置了一項(xiàng)互動(dòng)游戲如圖,一個(gè)圓形游戲轉(zhuǎn)盤被分成6個(gè)均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤,轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),箭頭所指區(qū)域的數(shù)字就是每次游戲所得的分?jǐn)?shù)(箭頭指向兩個(gè)區(qū)域的邊界時(shí)重新轉(zhuǎn)動(dòng)),且箭頭指向每個(gè)區(qū)域的可能性都是相等的.要求每個(gè)家庭派一名兒童和一位成人先后各轉(zhuǎn)動(dòng)一次游戲轉(zhuǎn)盤,記為,若一個(gè)家庭總得分,假設(shè)兒童和成人的得分互不影響,且每個(gè)家庭只能參加一次活動(dòng),游戲規(guī)定:

①若,則該家庭可以獲得一等獎(jiǎng)一份;

②若,則該家庭可以獲得二等獎(jiǎng)一份;

,則該家庭可以獲得紀(jì)念獎(jiǎng)一份.

(1)求一個(gè)家庭獲得紀(jì)念獎(jiǎng)的概率;

(2)試比較同一個(gè)家庭獲得一等獎(jiǎng)和二等獎(jiǎng)概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,.

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)求函數(shù)上的最小值(為自然對數(shù)的底數(shù));

(3)是否存在實(shí)數(shù),使得對任意正實(shí)數(shù)均成立?若存在,求出所有滿足條件的實(shí)數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時(shí)間t(小時(shí))之間近似滿足如圖所示的曲線.

(1)寫出第一次服藥后,y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);

(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于0.25微克時(shí),治療有效.求服藥一次后治療有效的時(shí)間是多長?

查看答案和解析>>

同步練習(xí)冊答案