11.關(guān)于漸開線和擺線的敘述,正確的是( 。
A.只有圓才有漸開線
B.漸開線和擺線的定義是一樣的,只是繪圖的方法不一樣,所以才得到了不同的圖形
C.正方形也可以有漸開線
D.對于同一個圓,如果建立的直角坐標(biāo)系的位置不同,畫出的漸開線形狀就不同

分析 不止圓有漸開線,橢圓、正方形等也有漸開線,漸開線和擺線的定義是不一樣的,得到了不同的圖形,對于同一個圓,如果建立的直角坐標(biāo)系的位置不同,畫出的漸開線形狀相同,

解答 解:不止圓有漸開線,橢圓、正方形等也有漸開線,故A錯,C正確;
漸開線和擺線的定義是不一樣的,得到了不同的圖形,故B錯;
對于同一個圓,如果建立的直角坐標(biāo)系的位置不同,畫出的漸開線形狀相同,故D錯.
故選:C

點(diǎn)評 本題考查了漸開線、擺線的定義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=3,an+1=an+3,數(shù)列{bn}的前n項和為Sn,且滿足2Sn=1-bn
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,已知$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$,記角A,B,C的對邊依次為a,b,c.
(1)求角C的大;
(2)若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)設(shè)z=$\frac{{({1-4i})({1+i})+2+4i}}{3+4i}$,求|z|.
(2)z∈C,解方程z•$\overline z-2zi=1+2\sqrt{2}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若不等式|x-1|+|x+1|≥|$\frac{1}{a}$+1|-|$\frac{1}{a}$-3|對任意實(shí)數(shù)a≠0恒成立,則實(shí)數(shù)x的取值范圍是{x|x≤-2,或 x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1+cos2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+$\sqrt{6}$sinx
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間
(Ⅱ)求函數(shù)y=f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量 x,y 滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=y-2x的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校從高一年級隨機(jī)抽取了20名學(xué)生第一學(xué)期的數(shù)學(xué)學(xué)期綜合成績和物理學(xué)期綜合成績,列表如下:
 學(xué)生序號 1 3 710 
 數(shù)學(xué)學(xué)期綜合成績 9692  91 9181  76 8279 90 93 
 物理學(xué)期綜合成績91  9490  9290  78 9171 78  84
 學(xué)生序號 1112  1314 15  16 1718 19 20 
  數(shù)學(xué)學(xué)期綜合成績68  7279 70 64 61 63  6653 59 
 物理學(xué)期綜合成績 79 7862  7262 60 68  7256 54 
規(guī)定:綜合成績不低于90分者為優(yōu)秀,低于90分為不優(yōu)秀.
(Ⅰ)對優(yōu)秀賦分2,對不優(yōu)秀賦分1,從這20名學(xué)生中隨機(jī)抽取2名學(xué)生,若用ξ表示這2名學(xué)生兩科賦分的和,求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)根據(jù)這次抽查數(shù)據(jù),列出2×2列聯(lián)表,能否在犯錯誤的概率不超過0.025的前提下認(rèn)為物理成績與數(shù)學(xué)成績有關(guān)?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k00.50  0.400.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}為等比數(shù)列,且4a1,2a2,a3成等差數(shù)列,若a1=1,則a10=512.

查看答案和解析>>

同步練習(xí)冊答案