5.若雙曲線x2+my2=2的虛軸長(zhǎng)為2,則該雙曲線的焦距為( 。
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

分析 根據(jù)題意,將雙曲線的方程變形為標(biāo)準(zhǔn)方程的形式,結(jié)合題意可得2$\sqrt{-\frac{2}{m}}$=2,解可得m的值,即可得雙曲線的標(biāo)準(zhǔn)方程,計(jì)算可得c的值,由雙曲線的焦距的定義計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為x2+my2=2,則其標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{-\frac{2}{m}}$=1,
若其虛軸長(zhǎng)為2,則有2$\sqrt{-\frac{2}{m}}$=2,
解可得:m=-2,
則雙曲線的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{1}$=1,其中c=$\sqrt{2+1}$=$\sqrt{3}$,
則該雙曲線的焦距為2c=2$\sqrt{3}$,
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),注意虛軸的長(zhǎng)是2b.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=alnx(a∈R).
(Ⅰ)若函數(shù)g(x)=2x+f(x)的最小值為0,求a的值;
(Ⅱ)設(shè)h(x)=f(x)+ax2+(a2+2)x,求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù)y=f(x)與函數(shù)u(x)=$\frac{x-1}{2x}$的圖象的一個(gè)公共點(diǎn)為P,若過(guò)點(diǎn)P有且僅有一條公切線,求點(diǎn)P的坐標(biāo)及實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在極坐標(biāo)系中,圓ρ=2cosθ被直線ρcosθ=$\frac{1}{2}$所截得的弦長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系xOy中.點(diǎn)M不與點(diǎn)O重合,稱射線OM與圓x2+y2=1的交點(diǎn)N為點(diǎn)M的“中心投影點(diǎn)“.
(1)點(diǎn)M(1,$\sqrt{3}$)的“中心投影點(diǎn)”為($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
(2)曲線x2$-\frac{{y}^{2}}{3}=1$上所有點(diǎn)的“中心投影點(diǎn)”構(gòu)成的曲線的長(zhǎng)度是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn是{an}的前n項(xiàng)和.已知a2a4=16,S3=28,則a1a2…an最大時(shí),n的值為3或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)復(fù)數(shù)z=1-$\sqrt{3}$i(i是虛數(shù)單位),則$\frac{2}{z•\overline{z}}$+$\frac{i}{1-i}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$iD.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)x∈R,則“x<4”是“x2-2x-8<0”的( 。
A.必要而不充分條件B.充分而不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知實(shí)數(shù)a、b都是常數(shù),且函數(shù)f(x)=$\frac{a|x-1|}{x+2}$+bex在點(diǎn)(0,f(0))處的切線方程是3x+4y-2=0,其中e=2.71828…是自然對(duì)數(shù)的底數(shù).
(1)求f(x)的解析式;
(2)設(shè)g(x)=(x+2)f(x)-klnx,?x∈(0,+∞),總有g(shù)(x)≥0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案