【題目】某港口的水深(米)是時間,單位:小時)的函數(shù),下面是每天時間與水深的關系表:

經過長期觀測,可近似的看成是函數(shù)

1)根據以上數(shù)據,求出的解析式;

2)若船舶航行時,水深至少要米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?

【答案】12

【解析】

1)由表中數(shù)據可以看到:水深最大值為13,最小值為7,求出;再借助于相隔12小時達到一次最大值說明周期為12求出即可求出的解析式;

2)把船舶安全轉化為深度,即;再解關于的三角不等式即可求出船舶在一天中的哪幾段時間可以安全的進出該港.

解:(1)由表中數(shù)據可以看到:水深最大值為,最小值為,

,

且相隔小時達到一次最大值說明周期為

因此,,

2)要想船舶安全,必須深度,即

解得:

時,;

時,;

故船舶安全進港的時間段為,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的圖象經過點,且相鄰的兩條對稱軸之間的距離為.

1)求函數(shù)的解析式;

2)若將函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,當時,的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

1)當時,求的最大值和最小值;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)求函數(shù)的單調減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點,點是單位圓與軸的正半軸的交點.

1)若,求.

2)已知,,若是等邊三角形,求的面積.

3)設點為單位圓上的動點,點滿足,,,求的取值范圍.時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.

方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎機會.

①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;

②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據頻數(shù)分布表計算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結果,并求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)數(shù)列滿足.

1)求數(shù)列的通項公式;

2)若等比數(shù)列滿足,求的值用含n的式子表示;

3)若,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則(  )

A平面α與平面β垂直

B平面α與平面β所成的(銳)二面角為45°

C平面α與平面β平行

D平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

同步練習冊答案