【題目】已知各項均為正數(shù)數(shù)列滿足.

1)求數(shù)列的通項公式;

2)若等比數(shù)列滿足,求的值用含n的式子表示

3)若,求證:數(shù)列是等差數(shù)列.

【答案】1.(2.(3)證明見解析

【解析】

1)根據(jù)題意,令,求出,列出時的表達(dá)式,兩式相減,整理可得的關(guān)系式,列出的關(guān)系式,兩式相減得到的關(guān)系式,利用等差數(shù)列通項公式進(jìn)行求解即可;

2)由(1)求出,代入等比數(shù)列通項公式可得數(shù)列的通項公式,令,利用錯位相減法進(jìn)行求和即可.

3)由題意知,,分別令,解方程求出,當(dāng)時,有,兩式相減得到,進(jìn)而可得,兩式相減可得,令,證得,由等差數(shù)列的定義可知即得證.

1)各項均為正數(shù)數(shù)列滿足

,解得,當(dāng)時,可得: ,

兩式相減可得,,

整理可得,,

時,,兩式相減可得:,

數(shù)列為首項為,公差為的等差數(shù)列,.

2)因為等比數(shù)列滿足

所以數(shù)列的公比,

,

,,兩式相減可得,

;

3)證明:由(1)知,,

可得:,又.

解得,

時,,

兩式相減可得:,

所以,

兩式相減可得:

設(shè),化為:.

,可得,以此類推可得:,

數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,e為自然對數(shù)的底數(shù).

(1)如果函數(shù)在(0, )上單調(diào)遞增,求m的取值范圍;

(2)設(shè),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口的水深(米)是時間,單位:小時)的函數(shù),下面是每天時間與水深的關(guān)系表:

經(jīng)過長期觀測,可近似的看成是函數(shù)

1)根據(jù)以上數(shù)據(jù),求出的解析式;

2)若船舶航行時,水深至少要米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進(jìn)出該港?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)時,的極大值為;當(dāng)時,有極小值。求:

1的值;

2)函數(shù)的極小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1是一個水平擺放的小正方體木塊,圖2,圖3是由這樣的小正方體木塊疊放而成的,按照這樣的規(guī)律放下去,至第七個疊放的圖形中,小正方體木塊總數(shù)就是( )

A. 25B. 66C. 91D. 120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,過的直線交拋物線于點,當(dāng)直線的傾斜角是時, 的中垂線交軸于點.

(1)求的值;

(2)以為直徑的圓交軸于點,記劣弧的長度為,當(dāng)直線點旋轉(zhuǎn)時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有6名男醫(yī)生,4名女醫(yī)生.

(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個不同地區(qū)去巡回醫(yī)療,一個地區(qū)去一名教師,共有多少種分派方法?

(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺“新聞現(xiàn)場”播報,近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因為感冒來的醫(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年16月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:

日期

120

220

320

420

520

620

晝夜溫差

10

11

13

12

8

6

就診人數(shù)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

同步練習(xí)冊答案