7.極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,曲線C的極坐標(biāo)方程為ρ=4cosθ,射線θ=φ,θ=φ+$\frac{π}{4}$,θ=φ-$\frac{π}{4}$與曲線C交于(不包括極點(diǎn)O)三點(diǎn)A,B,C.
(Ⅰ)求證:|OB|+|OC|=$\sqrt{2}$|OA|;
(Ⅱ)當(dāng)φ=$\frac{π}{12}$時(shí),求三角形△OBC的面積.

分析 (I)當(dāng)φ∈$(-\frac{π}{4},\frac{π}{4})$,|OB|+|OC|=4cos(φ+$\frac{π}{4}$)+4cos(φ-$\frac{π}{4}$),展開可與$\sqrt{2}$|OA相等|.φ∈$[\frac{π}{4},\frac{π}{2})$∪$(-\frac{π}{2},-\frac{π}{4}]$時(shí),同理可得.
(II)φ=$\frac{π}{12}$時(shí),ρB=$4cos\frac{π}{3}$,ρC=4cos$(-\frac{π}{6})$,φ+$\frac{π}{4}$-(φ-$\frac{π}{4}$)=$\frac{π}{2}$.利用直角三角形面積計(jì)算公式即可得出.

解答 (I)證明:當(dāng)φ∈$(-\frac{π}{4},\frac{π}{4})$時(shí),∴|OB|+|OC|=4cos(φ+$\frac{π}{4}$)+4cos(φ-$\frac{π}{4}$)=4$\sqrt{2}$cosφ=$\sqrt{2}$|OA|.
φ∈$[\frac{π}{4},\frac{π}{2})$∪$(-\frac{π}{2},-\frac{π}{4}]$時(shí),同理可得.
(II)解:φ=$\frac{π}{12}$時(shí),ρB=$4cos\frac{π}{3}$=2,ρC=4cos$(-\frac{π}{6})$=2$\sqrt{3}$,φ+$\frac{π}{4}$-(φ-$\frac{π}{4}$)=$\frac{π}{2}$.
∴三角形△OBC的面積=$\frac{1}{2}×2×2\sqrt{3}$=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)和差公式、極坐標(biāo)的應(yīng)用、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,E,F(xiàn),G,H分別是空間四邊形ABCD四邊的中點(diǎn).
(1)證明:EH∥平面BCD;
(2)若AC與BD成30°的角,且AC=6,BD=4,求四邊形EFGH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在四面體ABCD中,AB=CD=$\sqrt{10}$,AC=BD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,則四面體的外接球的表面積為( 。
A.6$\sqrt{3}$πB.8$\sqrt{3}$πC.14πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:
①不等式f(x)≤0的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=($\sqrt{3}$)${\;}^{{a_n}+5}}$,cn=$\frac{{6b_n^2+{b_{n+1}}-{b_n}}}{{{b_n}{b_{n+1}}}}$,{cn}的前n項(xiàng)和為Tn,若Tn>2n+t對(duì)任意n∈N,n≥2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=x2+ax+b,a≠b,則f(2)=4是f(a)=f(b)的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.不是充分條件,也不是必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列敘述中,正確的個(gè)數(shù)是( 。
①命題p:“?x∈[2,+∞),x2-2≥0”的否定形式為¬p:“?x∈(-∞,2),x2-2<0”;
②O是△ABC所在平面上一點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,則O是△ABC的垂心;
③在△ABC中,A<B是cos2A>cos2B的充要條件;
④函數(shù)y=sin(2x+$\frac{π}{3}}$)sin(${\frac{π}{6}-$2x)的最小正周期是π.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水尤為突出,某市為了制定合理的節(jié)水方案,從該市隨機(jī)調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.
(1)求圖中a的值并估計(jì)樣本的眾數(shù);
(2)該市計(jì)劃對(duì)居民生活用水試行階梯水價(jià),即每位居民月用水量不超過(guò)ω噸的按2元/噸收費(fèi),超過(guò)ω噸不超過(guò)2ω噸的部分按4元/噸收費(fèi),超過(guò)2ω噸的部分按照10元/噸收費(fèi).
①用樣本估計(jì)總體,為使75%以上居民在該月的用水價(jià)格不超過(guò)4元/噸,ω至少定為多少?
②假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)ω=2時(shí),估計(jì)該市居民該月的人均水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如果函數(shù)f(x)的定義域?yàn)閇-1,3],那么函數(shù)f(2x+3)的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,0]B.[1,9]C.[-1,3]D.[-2,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)數(shù),求g(a)=2-a|a+3|的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案