【題目】已知橢圓的焦距與短軸長相等,橢圓上一點到兩焦點距離之差的最大值為4.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若點為橢圓上異于左右頂點,的任意一點,過原點的垂線交的延長線于點,求的軌跡方程.

【答案】(1);(2).

【解析】

1)由題得b=c,到兩焦點距離之差,利用焦半徑的范圍得最大值,確定c值,即可得到橢圓方程;(2)設(shè),的斜率分別為,,由已知得,設(shè)直線BM的方程,整理可得點M的軌跡方程.

(1)由橢圓的焦距與短軸長相等得,

設(shè)為橢圓上任一點,左右焦點分別為,,

,∵.

最大值為,即,橢圓方程為;

(2)設(shè)的斜率分別為,,設(shè)點坐標(biāo)為,,

,

,直線的方程為

直線的方程為

①②兩式相除可得,

觀察可知,點不可能與點重合,則的軌跡方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國神舟十一號載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國轟動.開學(xué)后,某校高二年級班主任對該班進行了一次調(diào)查,發(fā)現(xiàn)全班60名同學(xué)中,對此事關(guān)注的占,他們在本學(xué)期期末考試中的物理成績(滿分100分)如下面的頻率分布直方圖:

(1)求“對此事關(guān)注”的同學(xué)的物理期末平均分(以各區(qū)間的中點代表該區(qū)間的均值).

(2)若物理成績不低于80分的為優(yōu)秀,請以是否優(yōu)秀為分類變量,

①補充下面的列聯(lián)表:

物理成績優(yōu)秀

物理成績不優(yōu)秀

合計

對此事關(guān)注

對此事不關(guān)注

合計

②是否有以上的把握認為“對此事是否關(guān)注”與物理期末成績是否優(yōu)秀有關(guān)系?

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中,平面,,分別為線段上的點,且

I)證明:平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,試討論方程的解的個數(shù);

2)若曲線上分別存在點,,使得是以原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一片產(chǎn)量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質(zhì)量(均在l11kg)頻數(shù)分布表如下(單位: kg):

分組

頻數(shù)

10

15

45

20

10

以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.

1)由種植經(jīng)驗認為,種植園內(nèi)的水果質(zhì)量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請估算該種植園內(nèi)水果質(zhì)量在內(nèi)的百分比;

2)現(xiàn)在從質(zhì)量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質(zhì)量的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為元,求的分布列及數(shù)學(xué)期望.

附: ,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱柱中,側(cè)棱底面,,,,為棱的中點.

1)證明:

2)求二面角的正弦值;

3)設(shè)點在線段上,且直線與平面所成角的正弦值是,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中

討論函數(shù)的圖象的交點個數(shù);

若函數(shù)的圖象無交點,設(shè)直線與的數(shù)的圖象分別交于點P,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和零點;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,,點為左支上任意一點,直線是雙曲線的一條漸近線,點在直線上的射影為,且當(dāng)取最小值5時,的最大值為( )

A. B. C. D. 10

查看答案和解析>>

同步練習(xí)冊答案