14.在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,若sinα=$\frac{1}{3}$,則sinβ=$\frac{1}{3}$.

分析 推導(dǎo)出α+β=π+2kπ,k∈Z,從而sinβ=sin(π+2kπ-α)=sinα,由此能求出結(jié)果.

解答 解:∵在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,
∴α+β=π+2kπ,k∈Z,
∵sinα=$\frac{1}{3}$,
∴sinβ=sin(π+2kπ-α)=sinα=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查角的正弦值的求法,考查對稱角、誘導(dǎo)公式,正弦函數(shù)等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|+|$\overrightarrow{a}$-$\overrightarrow$|的最小值是4,最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若tan(α-$\frac{π}{4}$)=$\frac{1}{6}$.則tanα=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)在(-∞,+∞)單調(diào)遞減,且為奇函數(shù).若f(1)=-1,則滿足-1≤f(x-2)≤1的x的取值范圍是( 。
A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為$\frac{a^2}{3sinA}$.
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為( 。
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( 。
A.1盞B.3盞C.5盞D.9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{4}$個單位長度,所得函數(shù)圖象的一條對稱軸方程是(  )
A.x=$\frac{2}{3}$πB.x=-$\frac{1}{12}$πC.x=$\frac{1}{3}$πD.x=$\frac{5}{12}$π

查看答案和解析>>

同步練習(xí)冊答案