【題目】已知橢圓的方程為,斜率為的直線與橢圓交于,兩點(diǎn),點(diǎn)在直線的左上方.
(1)若以為直徑的圓恰好經(jīng)過橢圓右焦點(diǎn),求此時(shí)直線的方程;
(2)求證:的內(nèi)切圓的圓心在定直線上.
【答案】(1).(2)見解析
【解析】
(1)設(shè)直線的方程為.設(shè),.由直線方程與橢圓方程聯(lián)立消元后應(yīng)用韋達(dá)定理得,由判別式大于0得的一個(gè)范圍,由點(diǎn)在直線的左上方再一個(gè)的范圍,兩者結(jié)合得的取值范圍,以為直徑的圓恰好經(jīng)過橢圓的右焦點(diǎn),說明,用坐標(biāo)表示并代入可求得,注意的取值范圍,即得直線方程;
(2)由(1)計(jì)算,即得直線是的內(nèi)角平分線,可得結(jié)論.
解:(1)設(shè)直線的方程為.設(shè),.
由得,則,.
由,解得.
又∵點(diǎn)在直線的左上方,∴.
若以為直徑的圓恰好經(jīng)過橢圓的右焦點(diǎn),
則,即,
化簡得,解得,或(舍).
∴直線的方程為.
(2)∵
,
∴直線平分,即的內(nèi)切圓的圓心在定直線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個(gè)全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學(xué)方法設(shè)計(jì)自己的家園.英國數(shù)學(xué)家麥克勞林通過計(jì)算得到∠B′C′D′=109°28′16'.已知一個(gè)房中BB'=5,AB=2,tan54°44′08',則此蜂房的表面積是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把4個(gè)相同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為;把4個(gè)不同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為.現(xiàn)在從到的所有整數(shù)中(包括和兩個(gè)整數(shù))抽取3個(gè)數(shù),則這3個(gè)數(shù)之和共有( )種結(jié)果.
A.26B.27C.28D.29
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠肺炎疫情期間,很多人積極參與了疫情防控的志愿者活動(dòng).各社區(qū)志愿者服務(wù)類型有:現(xiàn)場值班值守,社區(qū)消毒,遠(yuǎn)程教育宣傳,心理咨詢(每個(gè)志愿者僅參與一類服務(wù)).參與A,B,C三個(gè)社區(qū)的志愿者服務(wù)情況如下表:
社區(qū) | 社區(qū)服務(wù)總?cè)藬?shù) | 服務(wù)類型 | |||
現(xiàn)場值班值守 | 社區(qū)消毒 | 遠(yuǎn)程教育宣傳 | 心理咨詢 | ||
A | 100 | 30 | 30 | 20 | 20 |
B | 120 | 40 | 35 | 20 | 25 |
C | 150 | 50 | 40 | 30 | 30 |
(1)從上表三個(gè)社區(qū)的志愿者中任取1人,求此人來自于A社區(qū),并且參與社區(qū)消毒工作的概率;
(2)從上表三個(gè)社區(qū)的志愿者中各任取1人調(diào)查情況,以X表示負(fù)責(zé)現(xiàn)場值班值守的人數(shù),求X的分布列;
(3)已知A社區(qū)心理咨詢滿意率為0.85,B社區(qū)心理咨詢滿意率為0.95,C社區(qū)心理咨詢滿意率為0.9,“,,”分別表示A,B,C社區(qū)的人們對心理咨詢滿意,“,,”分別表示A,B,C社區(qū)的人們對心理咨詢不滿意,寫出方差,,的大小關(guān)系.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.
(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;
(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.
①求;
②規(guī)定,經(jīng)過計(jì)算機(jī)計(jì)算可估計(jì)得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機(jī)抽樣其中200名購房者,并對其購房面積(單位:萬元/平方米,進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市2018年1月至2019年1月期間當(dāng)月在售二手房均價(jià)(單位:萬元平方米),制成了如圖2所示的散點(diǎn)圖(圖中月份代碼1-13分別對應(yīng)2018年1月至2019年1月).
(1)試估計(jì)該市市民的平均購房面積.
(2)現(xiàn)采用分層抽樣的方法從購房面積位于的40位市民中隨機(jī)取4人,再從這4人中隨機(jī)抽取2人,求這2人的購房面積恰好有一人在的概率.
(3)根據(jù)散點(diǎn)圖選和兩個(gè)模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為和,并得到一些統(tǒng)計(jì)量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
請利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測2019年6月份的二手房購房均價(jià)(精確到0.001)./span>
參考數(shù)據(jù):,,,,,,,,
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C:,過拋物線焦點(diǎn)F的直線交拋物線C于A,B兩點(diǎn),P是拋物線外一點(diǎn),連接,分別交拋物線于點(diǎn)C,D,且,設(shè),的中點(diǎn)分別為M,N.
(1)求證:軸;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)
(1)證明:;
(2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com