【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經過1輪投球,記甲的得分為,求的分布列;

2)若經過輪投球,用表示經過第輪投球,累計得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關于b的表達式,并由此求出數(shù)列的通項公式.

【答案】(1)分布列見解析;(2)①;②.

【解析】

1)經過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件相互獨立,計算概率后可得分布列;

2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經過2輪后甲的得分的分布列(的取值為),然后結合的分布列和的分布可計算,

,代入,得兩個方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項公式得,然后用累加法可求得

1)記一輪投球,甲命中為事件,乙命中為事件相互獨立,由題意,,甲的得分的取值為,

,

,

的分布列為:

1

0

1

2)由(1

,

同理,經過2輪投球,甲的得分取值

,,,則

,,,

由此得甲的得分的分布列為:

2

1

0

1

2

,,

,,∴,

代入得:

,

∴數(shù)列是等比數(shù)列,公比為,首項為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平行志愿投檔錄取模式是高考志愿的一種新方式,2008年教育部在6個省區(qū)實行平行志愿投檔錄取模式的試點改革.一年的實踐證叨,實行平行志愿投檔錄取模式,有效降低了考生志愿填報風險.平行志愿是這樣規(guī)定:在同一批次設置幾個志愿,當考生分數(shù)達到這幾個學校提檔線時,本批次的志愿依次檢索錄取.某考生根據(jù)對自己的高考分數(shù)和對往年學校錄取情況分析,從報考指南中選擇了10所學校,作出如下表格:

學校

專業(yè)

數(shù)學系

計算機系

物理系

錄取概率

0.5

0.5

0.6

0.9

0.5

0.7

0.8

0.7

0.8

0.9

1)該考生從上表中的10所學校中選擇4所學校填報,記為選擇的4所學校中報數(shù)學系專業(yè)的個數(shù),求的分布列及其期望;

2)若該考生選擇了、、、4個學校在同一批次填報志愿,填報志愿表如下,如果僅以該考生對自己分析的錄取概率為依據(jù),當改變這4個志愿填報的順序時,是否改變他本批次錄取的可能性?請說明理由.

志愿

學校

第一志愿

第二志愿

第三志愿

第四志愿

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)ab滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當吋,解不等式

2)設.

①當時,若存在,使得,證明:;

②當時,討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C)的離心率為,點在橢圓C上,直線與橢圓C交于不同的兩點A,B.

1)求橢圓C的方程;

2)直線分別交y軸于M,N兩點,問:x軸上是否存在點Q,使得?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為,斜率為的直線與橢圓交于,兩點,點在直線的左上方.

1)若以為直徑的圓恰好經過橢圓右焦點,求此時直線的方程;

2)求證:的內切圓的圓心在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)在點處的切線方程;

2)設函數(shù)上有且只有一個零點,求的取值范圍.(其中,為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】檢驗中心為篩查某種疾病,需要檢驗血液是否為陽性,對份血液樣本,有以下兩種檢驗方式:①逐份檢驗,需要檢驗次;②混合檢驗,即將其中)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這份血液究竟哪幾份為陽性,再對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為.

1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為點.時,根據(jù)的期望值大小,討論當取何值時,采用逐份檢驗方式好?

(參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著運動app和手環(huán)的普及和應用,在朋友圈、運動圈中出現(xiàn)了每天1萬步的健身打卡現(xiàn)象,“日行一萬步,健康一輩子”的觀念廣泛流傳.“健步達人”小王某天統(tǒng)計了他朋友圈中所有好友(共500人)的走路步數(shù),并整理成下表:

分組(單位:千步)

頻數(shù)

60

240

100

60

20

18

0

2

1)請估算這一天小王朋友圈中好友走路步數(shù)的平均數(shù)(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點值作代表);

2)若用表示事件“走路步數(shù)低于平均步數(shù)”,試估計事件發(fā)生的概率;

3)若稱每天走路不少于8千步的人為“健步達人”,小王朋友圈中歲數(shù)在40歲以上的中老年人共有300人,其中健步達人恰有150人,請?zhí)顚懴旅?/span>列聯(lián)表.根據(jù)列聯(lián)表判斷,有多大把握認為,健步達人與年齡有關?

健步達人

非健步達人

合計

40歲以上

不超過40

合計

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案