直線y=a(a∈R)與拋物線y2=x交點(diǎn)的個(gè)數(shù)是(  )
A、0B、1C、2D、0或1
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:在坐標(biāo)系中畫出函數(shù)的圖象,根據(jù)函數(shù)的圖象,可以得出結(jié)論.
解答:解:畫出函數(shù)的圖象,根據(jù)函數(shù)的圖象,得
由圖象知,直線y=a(a∈R)與拋物線y2=x交點(diǎn)只有1個(gè).
故選:B.
點(diǎn)評(píng):本題考查了利用函數(shù)的圖象來解答問題的知識(shí),解題時(shí)只需畫出函數(shù)的圖象,即可得出答案,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(6,
6
)的直角坐標(biāo)為( 。
A、(-3
3
,3)
B、(-3
3
,-3)
C、(-3,3
3
D、(-3,-3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x+sinx(x∈[-
π
4
π
4
])的最大值和最小值分別為( 。
A、1,-1
B、
1+
2
2
,-
1
2
C、
1+
2
2
,
1-
2
2
D、
5
4
,
1-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線x2=2py(p>0)上縱坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離為3,則焦點(diǎn)到準(zhǔn)線的距離為(  )
A、2
B、8
C、
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P為拋物線x2=12y的焦點(diǎn),A、B是雙曲線3x2-y2=12的兩個(gè)頂點(diǎn),則△APB的面積為(  )
A、12B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個(gè)正數(shù)a,b的等差中項(xiàng)是
9
2
,等比中項(xiàng)是2
5
,且a>b,則拋物線ay2+bx=0的焦點(diǎn)坐標(biāo)為(  )
A、(-
5
16
,0)
B、(-
1
5
,0)
C、(
1
5
,0)
D、(-
2
5
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC的三個(gè)頂點(diǎn)都在給定的拋物線x2=2py(p>0)上,且斜邊AB∥x軸,則斜邊上的高|CD|=( 。
A、p
B、2p
C、
p
2
D、
p
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x按向量
a
平移后得到的直線與曲線y=ln(x+2)相切,則
a
為( 。
A、(0,1)
B、(1,0)
C、(0,2)
D、(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
x-
5
2
,則f(2014)=( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案