20.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-{2^x},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$,則f[f(-1)]等于( 。
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

分析 直接利用分段函數(shù)由里及外逐步求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}1-{2^x},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$,則f[f(-1)]=f[1-2-1]=f($\frac{1}{2}$)=$(\frac{1}{2})^{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-ax2+bx的圖象與直線3x+3y-8=0相切于點(diǎn)(2,f(2)).
(1)求a,b的值;
(2)求函數(shù)f(x)區(qū)間[-2,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|x2-x-2<0},B={x|x≤1,或x≥2},則A∩B=(  )
A.[-1,2]B.(-1,1)C.D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:函數(shù)f(x)=logax(a>0,且a≠1)在區(qū)間(0,+∞)上單調(diào)遞增,命題q:函數(shù)f(x)=ax2-ax+1對(duì)于任意x∈R都有f(x)>0恒成立.如果p∨q為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是[0,1]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若直線y=-x+b與曲線x=$\sqrt{1-{y^2}}$恰有一個(gè)公共點(diǎn),則b的取值范圍是$-1≤b<1或b=\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a,b∈Z,“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)不透明的袋子裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字為0,1,2,2,現(xiàn)甲從中摸出一個(gè)球后便放回,乙再?gòu)闹忻鲆粋(gè)球,若摸出的球上數(shù)字大即獲勝(若數(shù)字相同則為平局),則在甲獲勝的條件下,乙摸1號(hào)球的概率為( 。
A.$\frac{5}{16}$B.$\frac{9}{16}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{e}$為平面向量,若|$\overrightarrow{e}$|=1,$\overrightarrow{a}$•$\overrightarrow{e}$=1,$\overrightarrow$•$\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|的最小值為3,$\overrightarrow{a}$•$\overrightarrow$的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若2a4+a3-2a2-a1=8,則2a5+a4的最小值為( 。
A.12B.$12\sqrt{2}$C.$12\sqrt{3}$D.$16\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案