分析 (1))|x-2|-|x-3|≤|(x-2)-(x-3)|=1,由此能求出m最小值.
(2)由(1)知$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=1$,由此利用均值不等式能證明a+2b+3c≥9.
解答 解:(1)∵|x-2|-|x-3|≤|(x-2)-(x-3)|=1,
不等式|x-2|-|x-3|≤m對x∈R恒成立,
∴m≥1,
∴m最小值為1.
(2)由(1)知k=1,
即$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=1$,
$a+2b+3c=(a+2b+3c)(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c})$
=$3+\frac{a}{2b}+\frac{a}{3c}+\frac{2b}{a}+\frac{2b}{3c}+\frac{3c}{a}+\frac{3c}{2b}$
$≥3+2\sqrt{\frac{a}{2b}•\frac{2b}{a}}+2\sqrt{\frac{a}{3c}•\frac{3c}{a}}+2\sqrt{\frac{2b}{3c}•\frac{3c}{2b}}=9$.
當(dāng)且僅當(dāng)a=2b=3c時等號成立,
∴a+2b+3c≥9.
點評 本題考查實數(shù)的最小值的求法,考查不等式的證明,發(fā)題時要認(rèn)真審題,注意均值不等式的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-8)∪(3,+∞) | B. | (-8,3) | C. | (-∞,-8) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | -$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com