3.已知函數(shù)y=cos(x-$\frac{π}{6}$)與y=sin(2x+φ)(|φ|<$\frac{π}{2}$),它們的圖象有個交點(diǎn)的橫坐標(biāo)為$\frac{π}{3}$,則φ的值為( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

分析 由題意可得cos$\frac{π}{6}$=sin($\frac{2π}{3}$+φ),即sin($\frac{2π}{3}$+φ)=$\frac{\sqrt{3}}{2}$,由此結(jié)合所給的選項(xiàng),得出結(jié)論.

解答 解:∵函數(shù)y=cos(x-$\frac{π}{6}$)與y=sin(2x+φ)(|φ|<$\frac{π}{2}$),它們的圖象有個交點(diǎn)的橫坐標(biāo)為$\frac{π}{3}$,
∴cos$\frac{π}{6}$=sin($\frac{2π}{3}$+φ),即sin($\frac{2π}{3}$+φ)=$\frac{\sqrt{3}}{2}$,
結(jié)合所給的選項(xiàng),只有φ=-$\frac{π}{3}$滿足條件,
故選:D.

點(diǎn)評 本題主要考查正弦函數(shù)的圖象,特殊角的三角函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列曲線的微分.
(1)y=ln(1-x2);
(2)$\left\{\begin{array}{l}{x=a•cost}\\{y=b•sint}\end{array}\right.$;
(3)r=a•θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=4x-a•2x+1(-1≤x≤2)的最小值為g(a).
(Ⅰ) 當(dāng)a=2 時,求g(a);
(Ⅱ) 求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x的不等式|x-2|-|x-3|≤m對x∈R恒成立.
(1)求實(shí)數(shù)m的最小值;
(2)若a,b,c為正實(shí)數(shù),k為實(shí)數(shù)m的最小值,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,該程序運(yùn)行后輸出的結(jié)果S為(  )
A.28B.19C.10D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為15萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為5萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)=$\left\{\begin{array}{l}{-2{x}^{2}+21x+1(0≤x≤5)}\\{56(x>5)}\end{array}\right.$,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本)
(2)求甲廠可獲得利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,9)時,f(x)=x2-2x,則函數(shù)f(x)在[0,2016]上的零點(diǎn)個數(shù)是605.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1+a3+a5=6,則S5=(  )
A.5B.7C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=e,則f(x2)=( 。
A.e2B.eC.$\sqrt{e}$D.不確定

查看答案和解析>>

同步練習(xí)冊答案