【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.

【答案】
(1)解:∵A為三角形的內(nèi)角,cosA= ,

∴sinA= = ,

cosC=sinB=sin(A+C)=sinAcosC+cosAsinC= cosC+ sinC,

整理得: cosC= sinC,

則tanC= ;


(2)解:由tanC= 得:cosC= = = = ,

∴sinC= = ,

∴sinB= cosC= ,

∵a= ,∴由正弦定理 = 得:c= = = ,

則SABC= acsinB= × × × =


【解析】(1)由A為三角形的內(nèi)角,及cosA的值,利用同角三角函數(shù)間的基本關(guān)系求出sinA的值,再將已知等式的左邊sinB中的角B利用三角形的內(nèi)角和定理變形為π﹣(A+C),利用誘導(dǎo)公式得到sinB=sin(A+C),再利用兩角和與差的正弦函數(shù)公式化簡,整理后利用同角三角函數(shù)間的基本關(guān)系即可求出tanC的值;(2)由tanC的值,利用同角三角函數(shù)間的基本關(guān)系求出cosC的值,再利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,將sinC的值代入sinB= cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面積公式即可求出三角形ABC的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級有50名學(xué)生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是(
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數(shù)大于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年至2020年,第六屆全國文明城市創(chuàng)建工作即將開始.在201797日召開的攀枝花市創(chuàng)文工作推進會上,攀枝花市委明確提出“力保新一輪提名城市資格、確保2020年創(chuàng)建成功”的目標(biāo).為了確保創(chuàng)文工作,今年初市交警大隊在轄區(qū)開展“機動車不禮讓行人整治行動” .下表是我市一主干路口監(jiān)控設(shè)備抓拍的5個月內(nèi) “駕駛員不禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測該路口7月份不“禮讓斑馬線”違章駕駛員的人數(shù);

(Ⅲ)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查“駕駛員不禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過

駕齡年以上

合計

能否據(jù)此判斷有97.5%的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項為1的等比數(shù)列;
(2)若a2>﹣1,求證 ,并給出等號成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數(shù)a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知箱中裝有4個白球和5個黑球,且規(guī)定:取出一個白球得2分,取出一個黑球得1分.現(xiàn)從該箱中任取(無放回,且每球取到的機會均等)3個球,記隨機變量X為取出此3球所得分?jǐn)?shù)之和.
(1)求X的分布列;
(2)求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,均為等邊三角形,且平面平面,中點.

(Ⅰ)求證:平面;

(Ⅱ)若的面積為,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案