(本小題滿分12分)
已知,其中是自然對(duì)數(shù)的底數(shù),
(1)討論時(shí),的單調(diào)性。
(2)求證:在(1)條件下,
(3)是否存在實(shí)數(shù),使得最小值是3,如果存在,求出的值;如果不存在,說明理由。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1) 若是的極值點(diǎn),求在[1,]上的最大值;
(2) 若在區(qū)間[1,+)上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)已知在x=2時(shí)有極大值6,在x=1時(shí)有極小值.
⑴ 求的值;
⑵ 求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點(diǎn)M,使得過M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)對(duì)一切的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對(duì)任意,且恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是3,求a,b的值;
(2)若f(x)為R上的單調(diào)遞增函數(shù),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com