(10分)已知在x=2時有極大值6,在x=1時有極小值.
⑴ 求的值;
⑵ 求在區(qū)間上的最大值和最小值.

;⑵,

解析試題分析:⑴由條件知

,






1

3

 

0

0

 



6




由上表知,在區(qū)間上,當時,,當時,.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的最值。
點評:極值點的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為0的點不一定為極值點。此題為常見題型,也是基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),且
(1)求函數(shù)的解析式.
(2)若在區(qū)間上恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)若函數(shù),處取得極值,求,的值;
(Ⅱ)若,函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
若函數(shù)時取得極值,且當時,恒成立.
(1)求實數(shù)的值;
(2)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中常數(shù) .
(1)當時,求函數(shù)的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當時,曲線上總存在相異兩點,
,使得曲線在點處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知,其中是自然對數(shù)的底數(shù),
(1)討論時,的單調(diào)性。
(2)求證:在(1)條件下,
(3)是否存在實數(shù),使得最小值是3,如果存在,求出的值;如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,其中是自然常數(shù),
(Ⅰ)當時, 研究的單調(diào)性與極值;
(Ⅱ)在(Ⅰ)的條件下,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的一個極值點.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若當時,恒成立,求的取值范圍。

查看答案和解析>>

同步練習冊答案