【題目】在四棱錐中,底面是直角梯形, ,且 ,側(cè)面底面是等邊三角形.
(1)求證: ;
(2)求二面角的大小.
【答案】(1)見解析(2)
【解析】試題分析:(1)先取AB 中點(diǎn)為O,連接PO,CO,根據(jù)條件得到PO⊥AB,再結(jié)合側(cè)面PAB⊥底面ABCD,得到PO⊥底面ABCD,即可得到OC為PC在底面ABCD上的射影;最后結(jié)合△DAB≌△OBC得BD⊥OC即可得到結(jié)論;
(2)先取PC中點(diǎn)E,連接BE,DE,可以證得∠BED就是二面角B-PC-D的平面角;在通過求三角形BED的三邊長(zhǎng),即可得到結(jié)論.
試題解析:
取AB 中點(diǎn)為O,連接PO,CO,
∵△PAB 是等邊三角形,
∴PO⊥AB,
又∵側(cè)面PAB⊥底面ABCD,
∴PO⊥底面ABCD,
∴OC為PC在底面ABCD上的射影,
又∵AB=BC=2AD=2,∠ABC=∠DAB=∴△DAB≌△OBC,∴∠BCO=∠DBA,
∴BD⊥OC,∴BD⊥PC.
(2)取PC中點(diǎn)E,連接BE,DE,
∵PB=BC,
∴BE⊥PC,
又∵BD⊥PC,BE∩BD=B,
∴PC⊥平面BDE
,∴PC⊥DE,
∴∠BED就是二面角B-PC-D的平面角.
∵AB=BC=2AD=2,∠ABC=∴BE=PC= ,PD=BD= ∴DE=
∴BE2+DE2=BD2,
∴∠BED= 即二面角B-PC-D的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定義映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),則f(4,3,2,1)=( )
A. (1,2,3,4) B. (0,3,4,0)
C. (0,-3,4,-1) D. (-1,0,2,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形, .已知, .
(Ⅰ)證明: ;
(Ⅱ)若為上一點(diǎn),記三棱錐的體積和四棱錐的體積分別為和,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求證:函數(shù)有且僅有一個(gè)零點(diǎn);
(Ⅲ)當(dāng)時(shí),寫出函數(shù)的零點(diǎn)的個(gè)數(shù).(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)為點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),點(diǎn)在拋物線上,則下列說法錯(cuò)誤的是( )
A. 使得為等腰三角形的點(diǎn)有且僅有4個(gè)
B. 使得為直角三角形的點(diǎn)有且僅有4個(gè)
C. 使得的點(diǎn)有且僅有4個(gè)
D. 使得的點(diǎn)有且僅有4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間
(2)當(dāng)時(shí),求函數(shù)在上的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的, 都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(I)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)證明: 在區(qū)間上恰有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機(jī)抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個(gè)問題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小王作出選擇,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com