11.函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的奇偶性為奇函數(shù).

分析 先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷.

解答 解:函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的定義域?yàn)镽,且滿足f(-x)=$\frac{{e}^{-x}{-e}^{x}}{2}$=-f(x),
故該函數(shù)為奇函數(shù),
故答案為:奇函數(shù).

點(diǎn)評 本題主要考查函數(shù)的奇偶性的判斷,先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某企業(yè)為解決困難職工的住房問題,決定分批建設(shè)保障性住房供給困難職工,首批計(jì)劃用100萬元購買一塊土地,該土地可以建造每層1000平方米的樓房一幢,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高20元,已知建筑第1層樓房時,每平方米的建筑費(fèi)用為920元.為了使該幢樓房每平方米的平均費(fèi)用最低(費(fèi)用包括建筑費(fèi)用和購地費(fèi)用),應(yīng)把樓房建成幾層?此時平均費(fèi)用為每平方米多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知tan(α+$\frac{π}{4}$)=2,則$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sin2x-$\sqrt{3}$cos2x的圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{12}$B.x=-$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$f(x)=\frac{1}{lg(x+1)}+\sqrt{2-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,0)∪(0,2]B.[-2,0)∪(0,2]C.[-2,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2x+2ax+b,且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$.
(Ⅰ)求實(shí)數(shù)a,b的值并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)判斷函數(shù)f(x)在[0,+∞)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,則雙曲線C的離心率為(  )
A.$\frac{{2\sqrt{13}}}{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{{2\sqrt{39}}}{9}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)當(dāng)a=2時,求A∪B
(2)當(dāng)B⊆A時,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a=lg3,$b={4^{\frac{1}{3}}}$,c=lg0.3,這三個數(shù)的大小關(guān)系為(  )
A.b<a<cB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

同步練習(xí)冊答案